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The Hamilton—Cartan formalism in supermechanics is developed, the graded structure
on the manifold of solutions of a variational problem defined by a regular homogeneous

Berezinian Lagrangian density is determined and its graded symplectic structure is
analyzed. The graded symplectic structure on the manifold of solutions of a classical

regular Lagrangian is compared with the Koszul-Schouten brackets.

KEY WORDS: Batalin—Vilkoviski structures; Berezinian and Lagrangian density;
graded symplectic structure; Koszul-Schouten bracket; P@n€artan form.

1. INTRODUCTION

The goal of this paper is to develop the Hamilton—Cartan formalism in su-
permechanics; i.e., for variational problems on the space of curves of a graded
manifold. In this development, the first key point is to realize the important role
that R'* plays in the graded setting: On the one hand the sections of the struc-
ture sheaf of a graded manifold/i( .4) can be recovered as the graded mor-
phisms from M, A) into RY, and on the other, the natural integration theory
of graded vector fields us@''*-flows, notR-flows (see Monterde andaBcthez-
Valenzuela, 1993). Consequently, we formulate variational problems on the space
of R-curves with values in a graded manifold. Up to our knowledge, this possi-
bility has never been considered beforeRA -curve in M, A) is a graded mor-
phismy: R1 — (M, A). Such a morphism determines a footprint on the base
manifoldsy: R — M which is nothing but a classical curve dh. Nevertheless,
theRY-curve is more than just its footprint. It also has an important “soul” part.

The second key point is the use of the Berezin integral on the marftfotd
in order to state the variational problems. It is only with such a kind of integral
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that the Euler—Lagrange equations associated to a variational problem are the
equations one can expect and where even and odd variables are treated on the
same footing.

Once we have made these two choid@8'curves and Berezin integral) the
whole program of variational calculus works in a natural way. Several parts of
this program have been developed already: The construction of graded jet bun-
dles (Hermndez Ruipfez and Mndz Masqe, 1984, 1987), the deduction of
the Euler-Lagrange equations for a Berezinian Lagrangian density (Monterde,
1992a), and the definition of regular Lagrangians as well as the very first steps of
supermechanics (Monterde and Mir Masqe, 1992).

Here, we propose a new definition of PoirgaCartan form and we show
that—as in the classical case—there is a bijection between the critical sections
of a variational problem and the extremals of the Poiee&@artan form. In this
setting, we introduce canonical coordinates, we compute the radical of the exterior
derivative of the PoincarCartan form, we write down the Hamilton equations in
canonical coordinates, and we solve them. The final stage of this study is to define
the graded manifold of solutions and a symplectic structure on it.

At this point some remarks should be done: The first one is that if the graded
dimension of M, A) is (m, n), then the dimension of the graded manifold of
solutions is (2 + n), 2(m + n)). This shows that, even though in mechanics the
manifold of solutions of a variational problem is the tangent bundle, thisis no longer
true in supermechanics: The graded manifold of solutions is not the supertangent
bundle of M, A). In fact, the graded dimensions of the two notions of supertangent
bundle appearing in the literature aren(;22n) and (2n + n, m 4+ 2n). There is an
earlier approach to supermechanics proposed im€aaand Figueroa (1997). In
this paper the authors use the right notion of supertangent, but, as a consequence of
the previous remark, their approach cannot be the same than the one proposed here.

The second remarkable fact is the change of parity. If the initial graded
Lagrangian function is even (resp. odd), then the resulting symplectic form is
odd (resp. even). This means that if one wants to use a classical Lagrangian to
define a graded variational problem, then the simplectic graded form will be an
odd symplectic form. Therefore, given a regular classical Lagrangian funiction
on a differentiable manifolt!, we can define a variational problem on the graded
manifold (M, C*>°(M)). By applying all our previous results, we construct a graded
manifold of solutions §, .As) together with a variational symplectic fora.

Moreover, according to the classical variational calculusiefines a sym-
plectic form onTM. Such a symplectic form induces an odd symplectic structure
on the graded manifoldTM, Qtyv). This odd symplectic structure is called the
Koszul-Schouten symplectic structure and its graded Poisson bracket is a par-
ticular case of Batalin—Vilkovisky structure. Our last result is to show that the
graded symplectic manifold3 M, Q21y) together with the Koszul-Schouten sym-
plectic formwg and the manifold of solutions( .As) together with the variational
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symplectic formws, are isomorphic. We thus conclude that the Koszul-Schouten
symplectic structures can be obtained by simply adapting variational calculus to
the graded manifold category.

2. CURVES ON GRADED MANIFOLDS

We work in the category dE*° graded manifolds; definitions are taken from
Kostant (1977). On a graded manifoli( .A) of graded dimensionng, n) pos-
itive indices are used for even coordinates;i = 1,..., m, and negative in-
dices for odd coordinatest',i = —n, ..., —1. The natural homomorphism is
denoted by4d — Ciy, f — f. Nevertheless, the coordinates of the graded mani-
fold R11—with base manifoldR and graded ringR**—are denoted byt(s),
with |t| =0, |s| = 1;i.e.,RY = {f(t) + g(t)s: f, g € C®(R)}. In the category
of graded manifoldsR* plays the same role &in the category of differentiable
manifolds. This is due to the following two basic facts: (1) The graded morphisms
between {1, A) andR'* are exactly the global sections of the structure sheaf;
i.e., Mor((M, A), RM) = A(M), and (2) a theory of integration for graded vector
fields is only possible if one us@"*-flows, but not withR-flows (cf. Monterde
and Sinchez-Valenzuela, 1993).

We recall that a classical curye R — M can be seen as a sectionmf R x
M — R. In the graded case we must substitiité for R. Hence a graded curve
must be a section of the graded submergignRY* x (M, 4) — RY* given by
the projection onto the first factor, or equivalently, a morphism of graded manifolds
y: RUL = (M, A).

We denote byd: Q"(M) — Q'*1(M) the exterior differential on a classical
differentiable manifoldvl and by d" (M, A) — Q'T1(M, A) the graded exterior
differential on a graded manifoldV, A).

Example 2.1. In order to work out an example, let us choose a particular graded
manifold. LetM be a differentiable manifold and let us consider the graded mani-
fold (M, Qum), whereQy denotes the sheaf of differential forms . Hence
dim(M, Qy) = (m, m) if m= dim M. Given a coordinate systeny¥, ..., y™

on M, we can build up a system of adapted graded coordinatesiy ). Accord-

ing to our way of denoting graded coordinateg)(i = —m, ..., —1,1,..., m,

we havex' = y',x' =dy',i =1,..., m. Agraded curve/: R" — (M, Q)

is determined by a pair of maps R — M, y*: Q(M) — R, Note that the
homomorphismy* is not necessarily the pull-back mapyofR — M. We have

yr(y) =y oy=fi)
y*(dy) =d s,
If * is the pull-back ofy: R — M, theng' = (f')’. Also note the following—in

fl,g eC®R):i=1,...,m. 1)
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principle—disappointing fact: l& € (M) is a differentiable form without 0 and
1-degree parts, then' (o) = 0.

3. GRADED FIRST-ORDER JET BUNDLE

The usual coordinate description of jet bundles does not work with graded
manifolds. A more intrinsic construction of graded jet bundles, entailing further
algebraic formalizations, is needed. This is done in ldad&z Ruipfez and Mudz
Masql€ (1984) and we do not repeat it here. According to this construction we
can define the graded 1-jet bundigRY?, (M, A)) of local sections opy: R x
(M, A) — R itsgraded dimensionis & 2m + n, 1+ m+ 2n),dim(M, A) =
(m, n). We remark that the base manifold underlyifgR**, (M, A)) is not equal
to JY(R, M). The graded ring ad*(R**, (M, A)) is denoted byA*. Also we denote
the graded ring oR x (M, A) by A° as JORY?, (M, A)) = R x (M, A).

The graded fibred coordinates on first-order jet bundles are defined imhtirn”
Ruipérez and Madz Masqge” (1984) and Monterde (1992a); we denote them
by t, s, x; x;x), i =—n,...,=1,1,...,mwith t| = x| = [x|| = [x}| =0,
and|s| = [x"| = x| = x| =1,forh=—n,..., -1;i =1,...,m.

We remark that the intrinsic algebraic construction of graded jet bundles can
produce shocking facts likg:}(y)*(x.) = 0 for every local sectiory: R —

R x (M, A), wheni > 0.

3.1. Curves and the First-Order Jet Bundle

As is well known, a variation of a classical curveR — M is a 1-parameter
family of curvesyt(t) (t € R being the variational parameter) such that=y.
According to our philosophy of substitutifig!* for R, a variation of a graded
curve on a graded manifolg;,; R — (M, A), must also be &*-parameter
family of graded curves.

We exclusively consider variations of a curve induced by a graded vector
field. In the classical case, the variations of a curve induced by a vector field are
just the composition of the curve with the integral flow of the vector field. It can
be shown that any even graded vector field can be integrated by simply using an
even parameter, but the situation is different in the odd case.

Let us briefly recall the problem of existence and uniqueness of solutions
of first-order superdifferential equations that have been studied in Monterde and
Sanchez-Valenzuela (1993). The first fact to note is that the parameter space in the
graded setting i and that the problem of founding the integral flow of a graded
vector field must be stated in terms of this parameter space. Second, once we have
chosen the parameter space, we must choose a model of graded vector field on it.
It is easy to check that there are three possible graded Lie algebra structures on
R each giving rise to a different model of right-invariant graded vector field. For
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example, for the additive structure (the one we use in what follows) the model of
graded vector field is given by/at + 9/9s.
Let X be a graded vector field on the graded manifdit] (4). We say that
I: R¥ x (M, A) — (M, A) is the flow of X if together with an initial condition
the following equation holds:

] ]
6\/t_oo<a+8—s>or*=8\/t_oor*ox,

where ev_q is the map defined byv_o (f(t) + g(t)s) = f(0). In Monterde

and Snchez-Valenzuela (1993), it is shown that any graded vector field can be
integraded—in the previous sense—by means of integral curves parametrized on
R, It is also shown there that if the homogeneous pAgisX; of X satisfy the
equations Ko, X1] = [X1, X1] = 0, then the previous equation also holds without

the evaluation map; i.e.,
ad ad
— 4+ — oI =T*o X. 2

<8t * 85) ° ° o)
Moreover the flow induces an action of the additive Lie group structuf@'df

on the supermanifoldM, A) and then, a kind of relation Iik&', s o I't, s, =
Cty4t,,5+s, IS Valid.

Example 3.1. Let us come back to the graded manifoM,(2y,). Graded vector
fields on it are derivations of the graded algefg. For example, given a vector
field onM, the Lie derivativeLx, is an even graded vector field odl ( 2)y). The
integral flow of this graded vector field is given tb¢, the pull-back of the integral
flow ®¢ of X. No odd parameter is needed in order to integrate even vector fields.
Therefore the variation of a graded curve produced by the graded vectoffield
is given by

Y o®i(y) =y (y o®p) = fi(t, 1), 1 o

. ‘ o _ i=1,...,m
y* o @p(dy) = yr(dy' o ) = gd'(t, t)s.

Example 3.Zcf. Monterde and &1 chez-Valenzuela, 1993). Onthe graded mani-
fold (M, Q) the exterior derivativel is an example of an odd vector field. Its
integral flow is given by the map = (I, I'*) : R x (M, Qum) — (M, Qu),
WIthT' = 7m: R x M — M andT*: Q(M) — Agir, (v q,,) IS given byl™(«) =

o + Sdo, wheret, s are the graded coordinatesii't. Therefore the variation of

a graded curve (1), produced by the graded vector éield given by

y*oI*(y') =y*(y +sdy)= fi(t)+d(t)ss
_ T i=1,....m.  (3)
y*oI'"(dy') = y*(dy) = d'(t)s.
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Example 3.3. Let us describe the 1-jet prolongation of a graded curven
(M, Q). If y* is given by (1), therj 'y is determined by the following equations:

) (4) = S (@) = (1),

0 (<) = 06 =0,
a

RONCSE ﬁ(gi ®)s) = (¢') Vs,

1) (&) = 5@ 09 =g @

Moreover, for the curves (3), given by the variations produced by the graded vector
field d, we have

059" (4) = (110 + 9059 = (1)) + d ()5S
P00 () = 10 = (110 + (059 = ~d 5
00 (1) = (009 = @) Os

00 (67) = -G 09 = 9 0. ©

Let us recall that foi > 0 we havej(y)*(x.) = 0 for any curvey. This fact

could induce to think that the coordinatgis useless in the 1-jet bundle. Why to
work with an algebraic construction of graded jet bundles which produces graded
coordinates that vanish when evaluated at any curve? The reason is now clear
after (5). From the second equation in (5) we see that this is no longer true for the
RYY-variations of curves. This fact shows that such a coordinate is needed.

4. VARIATIONAL PROBLEMS IN SUPERMECHANICS
4.1. Berezinian Densities orR™/*

Below we recall the construction of the Berezinian she&t bf (for the gen-
eral case, see Haandez Ruipfez and Mndz Masqe;, 1985; Monterde, 1992a).
Let PL(R'") (resp.©21,,) be the sheaf of differential operators of oreir (graded
1-forms) onR'1*. We have Befg''') = Q1,, ® P1(R*")/Ky, whereK; is the right
RY-submodule of the operatoR such that for everyf e R** with compact
support, there exists an ordinary 0-form with compact supgpertR ! satisfying
dg = P(f)". We denote byP] the coset of® € @1,, ® P1(RY")in Ber®"'"). A
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basis of BerR!) is then given by [t ® 3/3s]. The Berezinian integral is defined

as follows:
/ £ = / PQY;
Ber R

wheret = [P] € Ber(RY) is a section with compact support. In the graded setting
there is another kind of integration: The graded integral. For every graded 1-form
o onRRM™ with compact support we set:

o= o,
RYL R

whered'is the image ot» in the canonical homomorphisg ., (R'Y) — QY(R).
Consequently, for every graded functidn= fo(t) + fi(t)se€ C*R)® A" R
with compact support, we have

d'[-fz/fodt, / |:dt®i:|f:/f1dt.
RUL R Ber s R

This shows that the graded integrfak. integrates on the first component bf
while the Berezinian integrqiBer integrates on the last component faf

4.2. The Sheaf of First-Order Berezinian Densities

Once we choose the integration procedure, we can state variational prob-
lems related with this integral, but first we need to define the variational ob-
jects that determine the variational problem. A construction, similar to that of the
Berezinian sheaf, leads us to the sheaf'Be}*, (M, A)): Its sections are of the
form[dt ® é’—S]L,with L e Al anddiS being the total (or horizontal) derivative with
respect tes (see Monterde, 1992a). These sections are the objects that define a
variational problem.

4.3. Action Functional

Every global sectiort € Ber'(R'%, (M, A)) gives rise to a functional?
defined by the formula

d a
3 _ 1l ks 1 \x el _ e F
)= [ avre= [ @ [ae g |u= [ [ae 2] dbn

on the space of the sections pf: R** x (M, A) — R for which the integral
above converges.
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If L is even, therfBer(j 1y)*£ vanishes for any curve. Indeed,

Sl Nk i 1% _
[ire= [ [as Z]avu=o

sincejly*L € R' is even and hence it is of the fori(t); sod/ds(f (t)) = 0.
As R-variations ofy does not change the degreejéf *L, the action functional
vanishes identically. This fact again evidences the need of Wttevariations
of curves. When doing this, the expression under the Berezin integral becomes an
element inRY x R j.e., the integrand depends on the four graded coordinates
{t,s, t,s}.

LetT: RY x (M, A) — (M, A) be the integral flow of a vector field. The
variation of a curver is nothing but the composition

R RUL DN 1t v 4) D (M, A).

For the sake of simplicity, let us denote this compositioryby. Thus, j 1ytﬁj‘§L is
an element of the formg(t, t)L1(t, 1)s + La(t, )5+ La(t, t)ssin R x R,

Remark 4.1. It can easily be shown that the variation by means of an odd vector
field—e.g., the exterior derivativeeon the graded manifoldM, Qyv), Eq. (5)—of
an action functional defined by a classical Lagrangian function, does not vanish;

e.g.L=3>"(x)2

4.4. The Variational Principle

In order to obtain critical sections, i.e., curves such thatLf(y) =
Jgei1y)*€ takes the minimum for any variation produced by a vector field, we
must compute the derivative &f (yts) = Joe] 1yt—j*§)§ with respect tod/at +
9/ds, for this vector field is the one playing the role &fat in the classical
integration problem of a vector field (see Section 3.1 and Monterde amch8z-
Valenzuela, 1993). The derivative of the variatigrs with respect to the model
vector fieldd/at + 8/0s on R, evaluated at 0, is

eVlo o (3/0t + 3/05) o s = eVlp 0 (3/0t + 3/35) o (id x y*) o T*

= eVlreo o (id x y*) 0 (3/0t +3/0S) o I'*

= y*oeVlieoo (3/dt +3/8S) o I'*

=y oeVlgol" o X

= )/* o} X,
where we have used thaw|t—o o I'* = id, by virtue of the initial condition of
superdifferential equations.
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In Monterde and 8nhchez-Valenzuela (1993), it is shown that the usual re-
lationship between Lie derivatives on forms, exterior differentiation, and interior
multiplication, holds true in the theory of supermanifolds when one uses the right
notion of integral flow of graded vectors fields. Thus, e.dL, i§ an element ofd
and,yts denotes the integral flow of a graded vector fildthen

evlt—o o (3/3t 4 8/38)y’s(L) = y*(X(L)) = y*(LxL).
The same holds when lifting to the first-order jet bundld. K A, then
eVlmo o (3/0t + 3/39) ) ys(L) = ty* (XB(L)) = j'v*(Lxwl),

where XX denotes the prolongation & to thek-th order jet bundle and x
denotes the Lie derivative with respectt& (see Monterde and Mwz Masqe;,
1992). Therefore, in our case, we obtain

_ 971,
Vo o (9/0T + 3/09) [dt ® —} i)
Ber as '
5 _ _
:/ [dt@—}evh:oo(a/at+8/8§)jlyg*s{L)
Ber as '

B /Berjly* [dt ® 315] (X(l)(L))

= [ i (Exu) [dt ® 835} (L)) .

(For the definition of the Lie derivative of a Berezinian density see alsilrz
Ruipérez and Mudz Masqe’, 1987.) Therefore, given a sectipnwe can define
aIinearfunctionatByLS: Der,(A4) — R, called thdirst variation of L* aty, where
Der,(A) c Der(A) is the ideal of vector fields with compact support, as follows:

5,L5(X) = /B ) (exot).

A sectiony is said to be @Berezinian critical sectiorfor the functionalL? if
8,LfF =0.

5. EULER-LAGRANGE EQUATIONS

Onthe other hand, we can also define the concept of a critical section using the
other way of integration: The graded integration. Every global seatiar*(J?)
of the sheaf of differential 1-forms on the second-order jet bundle gives rise to a
functionallL®. (The need of the shift to the second-order jet bundle will be clear
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after Theorem 5.1.) The functional is defined by the formula
L) = [ (e
Rl\l

on the space of sections pf: R x (M, A) — R for which the above integral
converges. Given a sectignwe can define a linear functionglL”: Der,(.A°) —
R, called thefirst variation ofL* at y, as follows:

L0 = [ (%) (Exoa).

A sectiony is said to be graded critical sectiorfor the functionalL” if 5, L” =

0; i.e., if the first variation ofL® vanishes ay’. The fundamental fact is that a
Berezinian variational problem is equivalent to a graded Lagrangian variational
problem of higher order. The following theorem establishes such an equivalence:

Theorem 5.1(Comparison TheorenMonterde and Mn6z Masqe, 1992). Let
d
£ = [dt ® 5 } L € Ber(RY, (M, A), L e AL
be a first-order Berezinian Lagrangian density, and let

dL
re = dt— e QY(J?).
§ gs € (39
Then, for every sectiop, we haveSVILF = 8,17, Consequently, we can associate
in a canonical way an equivalent graded Lagrangian dersityp each Berezinian
Lagrangian density.

In this comparison result, the key point is that the link between Berezinian
Lagrangian densities and graded ones, is given by the total derivative with respect
to the odd coordinate. This will be recalled in the definition of Poiec&artan
forms.

5.1. Euler-Lagrange Equations of a Berezinian Density

Theorem 5.2 (Monterde, 1992a). With the same notations as in the previous
theorem, the Euler—Lagrange equations for the first-order Berezinian Lagrange
density¢ are the following

oo (AL d (ALY d (%))_
0 (- a () 05 (5) ) =©

i=-n,...,=-1,1,...,m
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Remark 5.3. It should be remarked that Berezinian variational problems are the
only producing Euler-Lagrange equations with even and odd variables treated
in the same equal footing. For graded variational problems, the corresponding
Euler—Lagrange equations distinguish between even and odd coordinates.

Example 5.4. Let us consider a graded manifold with null odd dimension; i.e.
(M, Cgr), and a classical first-order Lagrangian function ob it C*(JY(R, M)).

Then, the equations above reduce to the classical Euler-Lagrange equations as the
Lagrangian function does not depend on variatles

Remark 5.5. Let us recall (cf. Section 4.3) that for an even Lagrangian, then
! (y) vanishes for all curveg: RY — (M, A). Nevertheless, when we consider

R -variations of such a curves, then the action functional does not necessarily
vanish, and only those curveserifying the Euler—Lagrange equations are critical
sections of the functional.

6. REGULARITY CONDITIONS

In the classical variational setting, a variational problem is said to be regu-
lar if there is a bijection between critical sections of the variational problem and
solutions to the corresponding Hamilton’s equations. The existence of such a bi-
jection is assured by the fact that the Hessian matrix of the Lagrangian function is
nondegenerate. We want to determine the regularity conditions in the graded varia-
tional setting. Developing the Euler—Lagrange equations associated to a Berezinian
Lagrangian density, we obtain

2L
P2\ h
X ———+--- ] =0,
(1%y) (“axthaxt' )

where the dots denote terms involving derivatives of orderin order to be able
to write these equations down in the form

(%) () = Fn(r ) G 0, ) (), ()" (i)
we must impose the matri>dfL /dx{'dx!) to be nonsingular. In this case, the
problem is said to beegular. Hence, the Euler-Lagrange equations of a regular
Lagrangian are equivalent to a system of ordinary differential equations.
Proposition 6.1. Let L be a homogeneous graded function 8(R}*, (M, A)).
1. If [L] =0, then L is regular if

det(d”L/axMax)” #0, forh>0,i> 0,
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and
det(d?L/axMdx{)” #0, forh<0,i< 0.
2. If |lL| = 1, then L is regular if
det(d?L/ax!dx;)” #0, forh>0,i< 0.

Remark 6.2. Note that the second matrix in the even case is skew-symmetric,
thus forcingn to be even, where diny, .4) = (m, n). Also note that in the odd
casem = n necessarily.

7. POINCARE-CARTAN FORMS

Let us again recall that in the classical variational setting, once we have a
regular variational problem, then there is also a bijection between the critical sec-
tions of the variational problem and the solutions to Hamilton’s equation, which
is defined in terms of the Poin@&fCartan form. So, our next objective is to find a
corresponding PoincerCartan form in the graded setting. In Hendez Ruipfez
and Muioz Masqge’(1984, Definition 2.8), a canonical graded 1-form—called the
graded Poinca-Cartan form—is associated to each first-order graded Lagrangian
densityA. Here, we denote b®o (1) the graded PoincarCartan form correspond-
ingto—A. If A =dt - f,inlocal coordinates we have

Oo(r) = (dX' —dt - x| —ds- x;)aa—;i + A,
t

where—as usual—we skip the index 0 in the indices running from negative to
positive values. The forms ¥ —dt - x| —ds-x.),i =-n,...,—-1,1,...,m,

are called the standard contact forms on the 1-jet fibre bundle. Bearing the re-
lationship between Berezinian variational problems and graded variational ones
(Theorem 5.1) in mind, i.e.,

e = ‘Cd%(dt - L),
it is natural to consider the graded 1-form
O = E%@O(dt - L)

as a Poinca=Cartan form associated to the Berezinian Lagrangian density
First of all, note that from the very definition &fz we obtain

. oL . . _
O = (dxg — dt ~X|st)§_xti + (—1)*(dx' —dt - x; —ds-x])

d /oL dL
LIVILE P 6
de(ax;>+ ds ©
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Remark 7.1. The Poincag=Cartan form thus defined is a well-defined differential

form. Indeed, left’, s'} be another set of graded coordinatesidit. Then, there

are real functiond, g such that both systems of graded coordinates are related by

t' = f(t),s = g(t)s, with g(t) £ 0, f'(t) # 0, wheref’ denotes the derivative of

f with respect td. Accordingly, we have

d 1d

dt’ = f'(t) dt, — ===,
® ds gds

and if a global sectiog of the first-order Berezinian sheaf has the following two

expressions

d d
= —|L=|d'® —|L, L,L eAt
£ |:dt®ds:| [dt ®dg} , L,L'eA,

the relationship between these two functionsis giveh by (f’/g)L’. The change
of coordinates iR induces the following change of coordinateslf

xo=x/f x=x/0, X =x/9f"

According to this change of coordinates it is just a computation to check that the
Poincag—Cartan form is well defined. Indeed,

/

, i i iy oL
O =Lag <(dx'—dt/-xt',—ds’.x's/) i

+dt’- L’>

9((g/1")L)

c <(dxi —dt - x; —ds-xis)aiwtdt-gL)

1d
g ds t/

ds

La ((dXI —dt 'th —dS‘XIS)% +dt . L) = @g.
t

7.1. The Sub-BundleJ+Y(RY, (M, A))

For a classical variational problem, the configuration space is a mahifold
and the Lagrangian is a functidnon J*(R, M) = R x TM. The Poincag-Cartan
form is a 1-form onR x TM (i.e., a sectiorR x TM — T*(R x TM)), which
projects onto a mafk x TM — T*(R x M). The analogous projection process
can also be done in the graded setting. In principle, the P@nrCartan form lives
in the second order graded jet bundle but it should be noted that, from its local
expression@; only depends on the coordinatess, x', x|, xi, xL,); i.e.,®; does
not depend on!,. Therefore, in order to develop a true Hamiltonian formalism,
it would be desirable to project this form onto an appropriate fibre bundle. This is
done below.
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Let JLYRY, (M, A)) c IYRYC, JLROL, (M, A))) be the sub-bundle de-
fined bys = 0. Then, there exists a canonical submersion e

7 JP(RYM, (M, A) — IVYRM, (M, A))

defined as follows: Each morphisrh: R1! — (M, A) induces a family f;:
R — (M, A),t € R, and, taking jets,ji(f): R — JY(R:, (M, A)). By
composingj *( f;)* with the structure morphism * (R) — R we obtain [j( f;)]*:
AJl(]RO'l,(M,A)) — R. Let

M) Aot w4y = CT(R)

be the ring homomorphism defined by

YOI @ © = [ (@),

and let

YD1 R — IR, (M, A)

be the corresponding morphism of graded manifolds. It is readily seen that the
mappingj () = j1([j* f]) takes values iR, (M, A)), and also that

it Mor(R¥M, (M, A)) — T(ITYRM, (M, A)))

is a differential operator of second order. Consequeitly,must factor through
J2(RY, (M, A)), thus providing the desired submersion. From the previous local
expression fo®;, we can conclude th&; is w-projectable; its projection is also
denoted byOe.

Moreover, we remark that the role that(R, M) plays in the classical case,
is played byJ-YRY, (M, A)) in the graded case, but there is an outstanding
difference: Wheread!(R, M) is equal toR x TM, this is no longer true in the
graded case. The sub-bunde}(RY, (M, A)) is not the product aR** times the
supertangent. Anyone of the different definitions of the supertangent bundle exist-
ing in the literature does not provide the right dimension. The graded dimension
of this sub-bundle is (¥ 2m + 2n, 1+ 2m + 2n) and the dimensions of the pos-
sible supertangent bundle aren{(22n) (Kostant, 1977, 2.12) or (@ + n, 2n 4+ m)
(Sanchez-Valenzuela, 1986).

8. HAMILTON EQUATIONS

We are now ready to state the equivalence between the Berezinian Lagrangian
formalism and the Hamiltonian formalism in the graded case. Precisely,
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Theorem 8.1. A local sectiory of the submersionpR** x (M, A) — R is
a critical section for the Berezinian Lagrangian denditif and only if

(1%7)"(xd®¢) =0, @)

for every vector field X onZR, (M, A)) vertical overR**,

Proof: Let us start by taking = a/axsj forj=—n,...,—=1,1,...,m. Then,
we have

2y (o dor) = (o (—a (2 ) 1. (28 a2 (O
(i%y) <Lid05)—(l ¥) ( d(axtj +as s X o ox} \ ds

— ('2 )* _ka . 82L _ ka aZL _ ka . 82"
=y Koy ] t ok ST o kavyl
X" 0%y axtaxt OXg0X¢

2 2

0L
+ ds- x¥——— +ds- xX
® ax*ax; e

o {2 g ()
=(j2y)*dt<§—;—%(§—):) G <8axLJ>)

where we have used that contact forms vanish when pulling them back gpng
and also thatj%, dis = L Next, takingX = 8/9x!, we have

oxJ
o s o WJiafd (oL 9 [/dL
oo (o efa(3) 5 (2)
e oy (a5 ) b 2
= (~1)¥'La(j%) < d<a%>-+m aﬂ)

2L Ak 2L
axkaxi © axkax|

92L aL
IXKx{ Ix!

Koyl
X OX¢

= (DL, (i) (—dxk :
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d [aL aL
= (=D, (i29) | —dt - —
(=)7L (] V)< {dt(axt)-’_(axJ)}
n ds.i(a_t.))
ds axtj
. d[d[aL
= (¥ (—dt- = = [ —
(=1)™(j y)( ds{dt<axg>
d al_ oL
ds x| '
Finally, takingX = 3/8x{ or X = a/axg's we deduce thatj@y)*(.xd®;) directly

vanishes.
Therefore, for every vertical vector field, we have

(i%7)"(exdOg) = (j2)* (X (x¢) 5 + (—1)‘Xi‘X(Xi)(EarLSQi)). 8)
_ (3L _d/aL e 4 (oL
@ = <8x' dt (E)xt‘) =1 <8x' )) dt

In the previous theorem, the Eq. (7) is called Hemilton equatiorfor the
Berezinian Lagrangian density

The following result states that—as in the ungraded case—holonomy of the
solutions to Hamilton equations is a consequence of regularity.

where

O

Theorem 8.2. Let ®; be the gradedl-form associated to the Berezinian
Lagrangian density = [dt ® ]L. We have

(i) If y is a Berezinian critical section, thefj 11y )*(txd®s) = 0 for every
vector field X on 3R, (M, A)) vertical overR?,

(i) Conversely, assume L is regular and thaR'* — JLYRY, (M, A))is
a section such tha;*(1xd®;) = 0for every vector field X on‘{(RY,
(M, A)) vertical overRY. Then, there exists a unique Berezinian critical
sectiony such thaty = j&(y).

Proof: The first part of the statement follows taking into account that formula (8)
in the proof of the previous theorem remains true jfoty. For the second part,



Hamiltonian Formalism in Supermechanics 445

we just use the following equations and the fact thas regular:
* ) _ IXPIIXE ] =% i i i 9L _
y (Lfgd@g) =(-1) v ((dx —dt-x — ds~xs)m> =0,
9%L

* - X (L[ 1) e i i
y (‘iﬁde)s)—(—l)x Py <(dx's—dt'x'st)m

ax

+(—1)‘X"(o|xi—olt.xi—ds-xi)E L V) Zo o
' S ds \ ax/'ox|

9. CANONICAL COORDINATES

From now on we assume that the Lagrangian function under consideration is
homogeneous.

The following useful result involving regular Lagrangians allows us to con-
struct a set of graded coordinates dh(R?, (M, A)) adapted to the variational
problem.

Proposition 9.1. Let L be aregular homogeneous Lagrangian function, then the
set of graded functions

P oL d /oL

is a system of graded coordinates oh*(R*, (M, A)).

Remark 9.2. The degrees of the new coordinates gi¢ = |L| + X', |pi.sl =
LI+ |x'|+ 1.

Proof: It is easy to check that the graded Jacobian of the set of functions
(t,s, x1, xL, pi, pis) with respect to the graded coordinatess(x', x!, x., x.,)
is, up to a sign, equal to défL /dx{"dx!). Thus,L is regular if and only if the
Jacobian is invertible; i.e., if and only if

0%L
det(—h _ ) #0
9X{' 0X{
This condition is equivalent to the regularity of the homogeneous funttions

Let us now write the graded PoinesiCartan form (6) of a regular homoge-
neous Lagrangiah in terms of the canonical coordinates (9). We have

_ _ . . . dL
O = (dx{ — dt - x¢) pi + (=D (dx' —dt - x| —ds-x¢)pis + s dt

=dx.- p + (-1)"ldx' - p;,s + dtH, 4 ds- H,
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where

; i dL d i
He = —xgp — (1" % pis + e d_s(_xtl P+ L),

o d
Hs = (_1)1+|x lxls Pi,s = d_S(XIS pi)- (10)

These two functionst; and Hg, play the role of Hamiltonian functions, so they
deserve to be called theHamiltonian ands-Hamiltonian respectively. Note that
[Hel =I[LI+1,[Hs| = [L].

10. THE RADICAL OF THE POINCAR E—CARTAN FORM

Below we compute the radical of the exterior differential of the Poieear”
Cartan form

de; = —dx, A dp — (=1)*dx" A dpi s — dt A dH; — ds A dHs.

Note that @, is a 2-form whose degree depends on the degrele; i fact,
1O = |L|+ 1.
If X = Xo+ Xjis an arbitrary graded vector field, then

1xd®g = — Xo(x¢) dpi + dx} - Xo(pi) — Xa(x¢) dpi — (—1)*dx{ - Xa(pi)
— (DX XX ) dpr.s + (—1)*ldX’ - Xo(pi.s)
— (D)X Xy(x) dpis + dX' - Xy(pis)
— Xo(t) dH; + dt - Xo(H;) — Xa(t) dH; + dt - X1(Hy)
— Xo(S) dHg + ds - Xo(Hs) — X1(s) dHs — ds - X3(Hs).

The equationxd®; = 0 can be splitted into six graded equations according to the
coefficient of the differentials of the graded coordinates. Again these equations can
be splitted according to their parity. Thus the coefficientsl®f, dp, dx., dp s

give rise to the following eight equations:

JH;
op;

aHy

Xl(XiS) + Xl(t) %

=0,  Xo(x}) + Xo(t)— =0,

oH
Xo(p) = Xo(t) 5 - = Xo(9)pis =0,
S

Xu(P) ~ (X0 - Xul9Ps =0,

S
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Xali) + (1) Xalt) 5 = Xo(ex, =0,
Xa0) + (1 X0 5 = X9, =0,

Xi(P9) — (DX X0 TE =0, Xo(p) ~ (D Xk =0 (11)

The consequence of this set of equations is the following:

Theorem 10.1. The radical ofd®; is a free module of rank 2 and of tyf&, 1),
with free basis the pair of graded vector field$, X uniquely determined by the
conditions

X{(t)=1, X{(s)=0, |X!| =0,

XSt)=0, Xs)=1, X5 =1

Moreover the radical is involutive an&*, X%] = [X5, X5] = 0.

Remark 10.2. The two commuting relations satisfied b§ and X® above, are
precisely the required conditions for the fldwof X! + XS to satisfy (2). This
means thaX' + XS is a distinguished vector field from the point of view of the
integration problem (see Section 3.1). Equations (11) together with conditions
txt1xsd ®¢ = 0 are called the graded Euler—Lagrange equations of the Berezinian
variational problem defined hy.

Finally, the odd and even parts of the coefficientd bAnddsin (,d® = 0,
can be written, for a graded vector field satisfying the previous four, as

dH dH
XO(S)E =0, Xl(S)E =0,
dH dH
Xi(t)— = Xo(t)— = 0. 12
1(t) ds 0, o(t) ds 0 (12)

11. HAMILTON'S EQUATIONS IN CANONICAL COORDINATES

Next, let us come back to the solutions of Hamilton’s equations. We want
to determine those curves R — J11 such thaty*(1xd®;) = 0 for all X €
X (JI*1) vertical overRY?,

Theorem 11.1. Let & = [dt ® diS]L be a regular homogeneous Berezinian
Lagrangian density on R, (M, A)). The mapy ~ jLY(y), states a bijec-
tion between the set of critical sections {fand the set of curveg: R —
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JLYRYL, (M, A)) that satisfy the following system of six differential equations:

8(7/ Pis) — 8_Ht (y*pis)
at V \ox ) 3s

Ay p)  —, (9H
otV \axi )

3(7*xd) _<8Ht>, a(f*x;)zo,

(- 1)|X | =0,

otV \op 9s
i8()7*xi) — 8Ht
(7YX _
ST Y <8p.,s)' (13)

The differential equations have been written in canonical coordinates.

Proof: First, note
oH
14 dO; = —(—1)¥dp;, S+dt— + (-1)*ds S.
ax!
We know thaty®(t) =t, y*(s) =s asy = j>*(y) for some curvey: R —

(M, A), becauseL is regular (Theorem 8.2-(ii)). Moreover, the equation
7*(t o d®¢) = 0 can be written as
ax!

I — 8Ht> | <8H3>
()X AR = ot (a F s 7 ()

and this equation is equivalent to the following two

"7 ) y(g) A7 prs)

1) _
(=1) ax! ds

=0,

where the definition of the functiohls has been recalled. The same procedure
with the rest of the vertical coordinate vector fields gives the following equations:

oy™p) _ . (3H oy p) _ Z(pi.)
Et . y BXS'; L] és ‘ 1,S/1
or*xs) _ . (d3H oy x)
ot~V \ap ) os
ay* X) —, [ 9H A*X)  — i
1 |X| * — 7*(x).
= () e =T

Two of these equations are tautologicahas= 7*(y). Thus, only six equations
are relevant. O
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12. SOLVING THE HAMILTON EQUATIONS

In the classical setting, it is well known that the solutions to Hamilton equa-
tions are uniquely defined by the points in the tangent bundle; i.e., by tangent
vectors. Each tangent vector acts as an initial condition for the Hamilton equa-
tions, or, equivalently, as the initial point of an integral curve of the Euler vector
field.

Now, in order to solve the Hamilton equations it is necessary to introduce
the notion of an initial condition in this setting. Precisely,iaitial condition for
the system of equations in Theorem 11.1 is a grd@edgebra homomorphism
x: A(J*Y) — AR such thaty(s) = s, x(t) = 0. Let M>! be the underlying
manifold to J*1. A homomorphisimy is said to be over the poimte M1 if the
composition map

AQYY) LA R-SR

coincides with the linear fornev,(f) = f(2). In this case, we writgg = x,. A
curvey: R — J11is said to satisfy the initial conditiog if the composition

ev(t =0)

AL 1) L ARYY H% AR,

whereey—g)( f (t) + g(t)s) = f(0)+ g(0)s, coincides withy.

Theorem 12.1. Given an initial conditiony, there is a unique solutiop of the
Egs.(13) that satisfies the initial condition.

The existence of the Euler vector field in this setting (i.e., a vector field
whose integral curves are in one-to-one correspondence with the extremals of the
variational problem) is assured by the following

Theorem 12.2. Let L be a regular homogenous Lagrangian and let X be the
graded vector field belonging to the radical df®; defined by the conditions
X(t) =1, X(s) = 1 (i.e., X = X' + X5). Given an initial conditiony: A(J11) —
AR, let x: ARY x JV1) — A(RY) be the composition

id®x €Vis'=0)

ARM x 31 =S R @ AR =5 C¥R) ® AR = ARM).

Let I be the integral flow of X and leg: R — J%1 be the curve defined

by the conditiony* = y o I'*. Then,y is the unique solution to the differen-
tial equationg(13) that satisfies the initial conditio’ = €y;—q) o y*. Moreover

x = x/, thus, X determines the whole set of solutions to the variational problem
defined by the Lagrangian L.
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Proof: We first remark thay’ is an initial condition as we have
x'(s) = (8V=0) 0 7*)(S) = (€Vt=0) © X © T"*)(s)
= (x oeVr=0) o T)(s) = x(s) = s.
Similarly, x'(t) = 0. Sinceevy—g) o I'* = id, we concludg(’ = x. We have only

to prove that/"is a solution to the Egs. (13). Indeed,

PHX()) = (1) pe (% + x‘s)

1,S

i o¢

({92 , 9 ) iy 9pR(X) 9P (X))
_<<ﬁ+a_s)oy>(x)_ ot s

Equating now the homogeneous parts, we obtain

op* i T oH ay* i X Ax (i
Vaix) _ _(_1)\X lJ/ (ﬁ) , yaiX) = _(_1)l ‘}/ (XS)‘

The first set of equations are exactly the equations in (13) and, the second set is
tautological. Hence from the conditions

(X (X)) = —* (2_'; ) _ aﬁzgx;) N B?ngis),

=(xol*o X)(x") = <zo <i + i) o r*> (x)

we obtain

0704 _ (2) 0°(<) _
at api )’ s

These equations are exactly two groups of equations in (13). Also, from

PX(R)) = 7 (B—H‘ . pi,s),

axL

we obtain

ot axL s

The first set of equations is exactly another group of equations in (13) and the
second set is tautological. Finally, from

P(X(P) = (~1)15* (ﬁ) ,

axi
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we obtain

37" (pis) _ (—l)'xilﬁ* ﬂ ay*(pi,s) -0
ot axi ]’ as

These equations are exactly the two first groups of equations in (13).

Remark 12.3. The vector field of motionX = X! + XS, also called the Euler
vector field, deserves some words. This vector field is defined by the following
conditions: (i) its even park!, projects ont@/ot, (i) its odd part X$, projects onto
8/ds, and (i) X!, X® is a basis of the radical of the differential of the Poimear”
Cartan form.

Moreover, ifl" denotes the integral flow of' + XS then, due to the commu-
tation relations X!, X5] = [XS, X5] = 0, the Euler vector field and the integration
modeld/at 4+ 9/9s arel -related (see the Eq. (2) and Remark 10.2).

Its final local expression is the following:

9 9 : G oH 9 M 9
X=—+—+(x— (-2 ) — - = —
at  9s opis/ oX opi 9Xg
IH\ @ ] = )
' - ) — )X .
+<p"s+ ax's> ap +(=1) X 9pis

As in the classical case, we have shown that its flow determines all the solutions
of the regular variational problem. Moreover, it allows to put additional structures
on the set of solutions. This is what we do in the next section.

13. GRADED AND SYMPLECTIC STRUCTURES
ON THE MANIFOLD OF SOLUTIONS

The next result states that the set of solutions of Hamilton’s equations can
be endowed with a structure of graded manifold. Moreover, the differential of the
Poincag—Cartan form can be projected to this graded manifold and its projection
is a graded symplectic form on it.

Theorem 13.1(The manifold of solutions Let L be a regular homogeneous
Lagrangian and letds be the ring of first integrals of the distribution defined by
the radical ofd ©; (i.e., the first integrals common to bott 2nd X¢). Then,

1. d ©; can be irreducibly projected ontels, thus defining a symplectic
structure of degreé¢l | + 1.

2. TheR-graded algebras homomorphisms: As — AR can be identi-
fied with the initial conditions of the differential equatiofis3).
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Proof: The first statement follows from the previous results. To prove the second
one, let us note thatds is a subring of.A(JYY). Then, it is clear that each

x: A(J%Y) — AR induces, by restriction, a homomorphigpf: As — A" R.

The result now follows bearing in mind that, locallf(J*1) = R ®.As, where
A®B stands for the completion off ® B with respect to Grothendieck’s
m-topology. For the details see (Hamdez Ruipfez and Mudz Masqe’; 1984, 1,
Theorem 3). O

Remark 13.ZLocal expression of the symplectic form). Lfis a regular homo-
geneous Lagrangian, thenthe set of graded functiongl, pi, pis),i = —n, ...,
—1,1,...,m,wherep;, p s are defined in (9), is a system of graded coordmates
on the graded manifold of solutions and the expression of the symplectic form in
this set of canonical coordinates is

—dx, Adp — (—1)¥ldX A dpis = _dgs(dxi Adp).

Remark 13.3. If dim(M, A) = (m, n), then dimS = (2(m + n), 2(m + n)). The
dimension of this graded manifold allows both cases of homogeneous symplec-
tic graded manifolds: It allows odd symplectic forms because the dimension,
2(m + n), of the underlying manifold agrees with the dimension of the graded
ring and it allows even symplectic forms because the dimension of the underlying
manifold is even (see Monterde, 1992b).

Remark 13.4. In spite of the fact that in the ungraded case the manifold of solu-
tions is the tangent bundle, this is no longer true in the graded case. The graded
manifold of solutions is not the supertangent bundleMdf (). See the last para-
graph of Section 7.1.

Remark 13.5. Another remarkable fact is the change of parity. If the initial graded
Lagrangian is even (resp. odd), then the resulting symplectic form is odd (resp.
even). This means that if one wants to generalize a classical Lagrangian, theniitis
natural to choose an even Lagrangian whose image through the natural map be the
classical Lagrangian. Then, the simplectic form will be an odd symplectic form. Let
us recall that odd symplectic forms are simpler than the even ones. Itis well known
thatin order to define an even symplectic formwe need, atleast, a classical symplec-
tic form and a nondegenerate metric structure on some trivializing bundle. In or-
der to define an odd simplectic form, however, just a bundle isomorphism between
the tangent bundle of the underlying manifold and the trivializing bundle is needed.

14. COMPARISON WITH THE KOSZUL-SCHOUTEN BRACKETS

A classical particle is a curvg: R — M taking values in a differentiable
manifold M. The generalization of a classical partical is the following: A particle
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is a curvey: R — (M, C%). Note that a curve: RYM — (M, C°) is totally
determined by its footprint on the base manifgld®R™— M. The difference with
the classical notion is that we allow not ofityvariations, but als&**-variations.
This means that we work with mags R?? — (M, Cg?), or equivalently, with
maps*: C — R?2. Thus, the image of a coordinate functidrean be written as
follows: I'*(x') = fi(t,t) + hi(t,t)ss,i = —n,..., -1, 1,..., m. Note that we
introduceR?? by categorical arguments. First, we substifRteurves on a mani-
fold by R**-curves on the graded manifolii( C2°), and nothing is changed. Both
sets of curves are the same. Secondly, we variations ofR*-curves, but
this is equivalent to study maps froRf'2 — (M, Ci)- Some authors introduce
R?2 py other arguments. For example in Freed (1999, p. 22), the reason to intro-
duce two odd variables is just to obtain a nonvanishing evaluation of a particular
Lagrangian density.

All along this section, we study classical regular Lagrangians. In a certain
sense, we can say that we look at classical problems from a graded point of view.

Let us consider the following particular case of graded manifditl: ),
i.e., agraded manifold with no odd coordinates; its graded dimension@3,h =
dimM. A system of graded coordinates for this graded manifold is of the kind
(x),i =1,...,n,with no coordinates of negative indices. Let us also consider a
classical regular Lagrangidne C*(J*(p;: R x M — R)). This function can be
lifted to JY(RYL, (M, C>°(M))) and then, we can build up the first order Berezinian
density [d ® %] L. Note that, due to the absence of odd coordinateMinG;y),
the LagrangiarL is also regular from the point of view of graded variational
calculus.

Applying the previous deductions we obtain

1. A graded manifold of solutions of graded dimensiom, @), whose
canonical coordinates are'( p;, X, pis),i =1,...,n, and
2. An odd symplectic form that in canonical coordinates is written as

ws = —,Cdgs(dxi Adp) = —dx, Adp —dx' Adpis.

Example 14.1. Let us consider the concrete example of the following classical
regular Lagrangian oM = R™ L = 1 31", (x/)%. According to Example 5.4,

its graded Euler-Lagrange equations are sinjply)*x}, = 0 fori =1,...,n.

This agrees with the aforementioned fact that cupveRY! — (M, C®(M)) are
totally determined by their footprint on the base manifoldR™— M. Thus, in

this case, a graded curyeis a solution to the graded Euler—Lagrange equations if
and only ify is a solution to the classical Euler—Lagrange equations. The canoni-
calcoordinatesargs = X!, pis = X, i = 1,..., n,and the odd symplectic form

on the graded manifold of solutions is given bys = — 3" dx. A dx! —
S dx A dxl.
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14.1. Koszul-Schouten Bracket

Let (N, w) be a symplectic manifold of dimensiom2As it is well known,
one can construct an odd symplectic form on the graded manifgleg). Thisis
the form whose odd Poisson bracket is the Koszul-Schouten bracket. This bracket
is defined as follows: LeP be the associated nondegenerated Poisson bivector
and let #: T*N — T N be the induced isomorphism. We denote the bracket
by [,1r,: Q(N) x Q(N) — Q(N). Its action on differentiable 0 and 1-forms is
given by

[f.dle =0, [f.dg]le =P(df.dg), [df dg]p =d(P(df dg)), (14)

forany f, g € C*°(N), and it can be extended to the whole algebra of differentiable
forms by using the Leibniz identity. See (Koszul, 1985) or (Khudaverdian, 1998) for
the details. Let us take a system of Darboux coordinates/{t"),i = 1,...,n,

for (N, w) such thato = 31" dy A dy ™", and the associated Poisson tensor is
written asP = Z{‘:l(a/ayi) A (3/0y' ). The associated system of graded coor-
dinates onKl, Q) is (Y, y*t", y=', y7"),i = 1,..., n, where we recall that a
coordinate with negative indey; ', denotes an odd generatds .

Lemma 14.2. With this system of graded coordinates, the odd symplectic form
associated to the odd Poisson bracket defined by Koszul can be written as
n
wk =Y dy" Ady"* +dy' Ady "
i=1

Proof: The Hamiltonian vector fields defined by the graded coordinate functions
are (see Belah and Monterde, 1995, Proposition 2.6)

Iy, I=—o Y d=cs, [y, I=—L o, [dYy*"D=Ls.

)
ayltn By ayltn

Recall that the odd symplectic forma, associated to a nondegenerate odd Poisson
bracket, [, -], is defined by the formulad, 8] = —(D., Dg; w), whereD,, de-
notes the Hamiltonian vector field associated ta 2(M).

Let us compute the associated odd symplectic fapvp, for the Koszul-
Schouten bracket. First, remark that for the graded coordinate sygtesi(",
y=,y7="),i =1,...,n, the associated local basis of graded vector fields is

(LL,L AT ) i=1,....n,

Byl gyl tn ayl ayi N

and the associated local basis of graded 1-formsyis @y +", dy—', dy—'—"), for
i =1,...,n.Accordingly,

<£ 0t 'wK>= —[dy', y'*"] = 8,

‘HV 1
Ni+n oyl

<l_o_. Eﬁi@() =—[y',dy!"™"] = —&ij -

yi 1
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All other terms vanish. Therefore, we obtaig = Y[ dy~™ A dy'™ +dy' A
dy=-". O

Remark 14.3. The Koszul-Schouten Poisson bracket is a particular case of
odd Poisson bracket, also called antibracket or Buttin bracket. It can be shown
that if the exterior differentiald, is a derivation of an odd Poisson bracket on
(M, Qm), then itis a Koszul-Schouten bracket (see Beltahd Monterde, 1995,
Corollary 4.4). Moreover, the Koszul-Schouten bracket is an example of a Batalin—
Vilkovisky structure on M, Qy) (see Kosmann-Schwarzback and Monterde,
2000, Theorem 2.19).

14.2. Identification

Let L be a classical regular Lagrangian function on a manitdidThen,
it defines a nondegenerated Poisson bivedtron TM. Let us denote byvk
the Koszul-Schouten symplectic form on the graded manifolM, (TM)) (i.e.,

N = TM). Therefore TM, Q1) together with the odd symplectic formy , is an
odd symplectic supermanifold.

On the other hand, let us consider the graded manifdidg;;) and the same
Lagrangian lifted to the graded first-order jet bundle. By applying the previous de-
ductions to the corresponding Berezinian density and according to Theorem 13.1,
we can build up a graded manifold, the manifold of solutioBsAs), together
with a symplectic formws.

In this section our main objective is to prove th@M, Q1v) together with
the odd symplectic fornwk and (S, As) together with the symplectic formas,
are the same odd symplectic supermanifold.

Lemma 14.4. Given a classical regular Lagrangian L, there is an isomorphism
between the graded manifoldd R, (M, C5)) andRM x (TM, Q).

Proof: For both graded manifolds the base manifol®Rix TM = JX(R, M).
Let us take oMM the system of classical canonical coordinates associated to the

classical regular Lagrangial, (x', p),i =1,...,n. According to this choice
(t,s, X, pi,x', p_i),i = 1,...,n, is a system of graded coordinatesih' x
(TM, Qrm) and ¢, s, X', pi, X, pis). i =1,...,n, is a system of coordinates on

JEYRYL, (M, CF)).

The idea is to realize that jet coordinates of the hk@dpi_s behave like the
differential 1-formsx= = dx, p_j = dp.

We define the isomorphism between the two graded manifolds

@: R' x (TM, Q) — IVHRM™, (M, CY))
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by setting
d*(t) =1, d*(s) = s,
*(X)=x,  o*(p)=p,
P*(x ) =x,  P*(pui) = Pis.
It can be easily proved that this local definition is global. Indeed' i&= X'

(z4,...,2") is a change of coordinates M, then the corresponding changes
of graded coordinates are given by
P ox 07
Tz BT

whereq; = dL/dz). Moreover, recalling that~' denotes the odd generator d
we have

- oot e
X'=dx' = —dz! = —z7!.
0z} 0zl
This means
ax . axi axi
O*(x ) = d* z! — o*(z} _—z‘—x
och=o () = e

And similarly for the coordinateg; s and p_;. Therefore, the mag is globally
defined. O

Theorem 14.5. The graded symplectic manifold3M, Qryv) together with
the Koszul-Schouten symplectic foi and the manifold of solutionS, As)
together with the variational symplectic forrs, are isomorphic.

Proof: Inthe graded coordinatesintroduced in Lemma 14.4, the Koszul odd sym-
plectic form can be written asx = dx~' A dp; + dx' A dp_;, and the symplectic
form on the graded manifold of solutionss = —(dx. A dp; + dx' A dp; s). Re-
mark that|x'| = O for the initial graded manifold is of graded dimensiaon @).
Therefore, they are related by the isomorphmd*(ws) = —wk. O

We have thus obtained the Koszul odd symplectic form, or equivalently the
odd symplectic form defined by a nondegenerated Batalin—Vilkovisky structure,
as a byproduct of a well known deduction of the symplectic structure associated
to a regular Lagrangian, but adapting this deduction to the graded case.

14.3. The Hamiltonian Functions

LetL be aregular Lagrangian dvl and letH be the corresponding classical
Hamiltonian function; i.e.H = L — x{ p;. Let @ be the associated symplectic
form onTM and letXy be the Hamiltonian vector field defined by, « = dH.
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As above, let us study the same Lagrangian but from a graded point of
view. The image by the isomorphisih of thet and s-Hamiltonian functions
(10) associated to the graded problem are the followdrigH;) = dH € Q1(TM),
®*(Hs) = —w € Q%(TM). Indeed,

. ) dL ) .
O*(H) = @* <_X|5tpi — Xt Pis + E) =dxp —xdp +dL =dH,

and ®*(Hs) = ®*(—x.pis) = —dX A dp = —w. Therefore, the graded
Hamiltonian vector field with respect to the odd symplectic fasgn(the Koszul—
Schouten graded form) of these two graded functions are the following (see
Proposition 2.6 and its remark in Beltr'and Monterde, 1995):

Xy = —Lx, € DeP(QTM)),  XG.p,y = —d € Der'(Q(T M)).
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