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The Hamilton–Cartan formalism in supermechanics is developed, the graded structure
on the manifold of solutions of a variational problem defined by a regular homogeneous
Berezinian Lagrangian density is determined and its graded symplectic structure is
analyzed. The graded symplectic structure on the manifold of solutions of a classical
regular Lagrangian is compared with the Koszul–Schouten brackets.
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1. INTRODUCTION

The goal of this paper is to develop the Hamilton–Cartan formalism in su-
permechanics; i.e., for variational problems on the space of curves of a graded
manifold. In this development, the first key point is to realize the important role
thatR1|1 plays in the graded setting: On the one hand the sections of the struc-
ture sheaf of a graded manifold (M,A) can be recovered as the graded mor-
phisms from (M,A) into R1|1, and on the other, the natural integration theory
of graded vector fields usesR1|1-flows, notR-flows (see Monterde and S´anchez-
Valenzuela, 1993). Consequently, we formulate variational problems on the space
of R1|1-curves with values in a graded manifold. Up to our knowledge, this possi-
bility has never been considered before. AR1|1-curve in (M,A) is a graded mor-
phismγ : R1|1→ (M,A). Such a morphism determines a footprint on the base
manifolds ¯γ : R→ M which is nothing but a classical curve onM . Nevertheless,
theR1|1-curve is more than just its footprint. It also has an important “soul” part.

The second key point is the use of the Berezin integral on the manifoldR1|1

in order to state the variational problems. It is only with such a kind of integral
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that the Euler–Lagrange equations associated to a variational problem are the
equations one can expect and where even and odd variables are treated on the
same footing.

Once we have made these two choices (R1|1-curves and Berezin integral) the
whole program of variational calculus works in a natural way. Several parts of
this program have been developed already: The construction of graded jet bun-
dles (Hernández Ruip´erez and Mu˜noz Masqu´e, 1984, 1987), the deduction of
the Euler–Lagrange equations for a Berezinian Lagrangian density (Monterde,
1992a), and the definition of regular Lagrangians as well as the very first steps of
supermechanics (Monterde and Mu˜noz Masqu´e, 1992).

Here, we propose a new definition of Poincar´e–Cartan form and we show
that—as in the classical case—there is a bijection between the critical sections
of a variational problem and the extremals of the Poincar´e–Cartan form. In this
setting, we introduce canonical coordinates, we compute the radical of the exterior
derivative of the Poincar´e–Cartan form, we write down the Hamilton equations in
canonical coordinates, and we solve them. The final stage of this study is to define
the graded manifold of solutions and a symplectic structure on it.

At this point some remarks should be done: The first one is that if the graded
dimension of (M,A) is (m, n), then the dimension of the graded manifold of
solutions is (2(m+ n), 2(m+ n)). This shows that, even though in mechanics the
manifold of solutions of a variational problem is the tangent bundle, this is no longer
true in supermechanics: The graded manifold of solutions is not the supertangent
bundle of (M,A). In fact, the graded dimensions of the two notions of supertangent
bundle appearing in the literature are (2m, 2n) and (2m+ n, m+ 2n). There is an
earlier approach to supermechanics proposed in Cari˜nena and Figueroa (1997). In
this paper the authors use the right notion of supertangent, but, as a consequence of
the previous remark, their approach cannot be the same than the one proposed here.

The second remarkable fact is the change of parity. If the initial graded
Lagrangian function is even (resp. odd), then the resulting symplectic form is
odd (resp. even). This means that if one wants to use a classical Lagrangian to
define a graded variational problem, then the simplectic graded form will be an
odd symplectic form. Therefore, given a regular classical Lagrangian functionL
on a differentiable manifoldM , we can define a variational problem on the graded
manifold (M, C∞(M)). By applying all our previous results, we construct a graded
manifold of solutions (S,AS) together with a variational symplectic formωS.

Moreover, according to the classical variational calculus,L defines a sym-
plectic form onTM. Such a symplectic form induces an odd symplectic structure
on the graded manifold (TM,ÄTM). This odd symplectic structure is called the
Koszul–Schouten symplectic structure and its graded Poisson bracket is a par-
ticular case of Batalin–Vilkovisky structure. Our last result is to show that the
graded symplectic manifolds (TM,ÄTM) together with the Koszul–Schouten sym-
plectic formωK and the manifold of solutions (S,AS) together with the variational
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symplectic formωS, are isomorphic. We thus conclude that the Koszul–Schouten
symplectic structures can be obtained by simply adapting variational calculus to
the graded manifold category.

2. CURVES ON GRADED MANIFOLDS

We work in the category ofC∞ graded manifolds; definitions are taken from
Kostant (1977). On a graded manifold (M,A) of graded dimension (m, n) pos-
itive indices are used for even coordinates:xi , i = 1, . . . , m, and negative in-
dices for odd coordinates:xi , i = −n, . . . ,−1. The natural homomorphism is
denoted byA→ C∞M , f 7→ f̃ . Nevertheless, the coordinates of the graded mani-
fold R1|1—with base manifoldR and graded ringR1|1—are denoted by (t, s),
with |t | = 0, |s| = 1; i.e.,R1|1 = { f (t)+ g(t)s : f, g ∈ C∞(R)}. In the category
of graded manifolds,R1|1 plays the same role asR in the category of differentiable
manifolds. This is due to the following two basic facts: (1) The graded morphisms
between (M,A) andR1|1 are exactly the global sections of the structure sheaf;
i.e., Mor((M,A), R1|1) = A(M), and (2) a theory of integration for graded vector
fields is only possible if one usesR1|1-flows, but not withR-flows (cf. Monterde
and Sánchez-Valenzuela, 1993).

We recall that a classical curveγ :R→ M can be seen as a section ofp1:R×
M → R. In the graded case we must substituteR1|1 for R. Hence a graded curve
must be a section of the graded submersionp1: R1|1× (M,A)→ R1|1 given by
the projection onto the first factor, or equivalently, a morphism of graded manifolds
γ : R1|1→ (M,A).

We denote byd: Är (M)→ Är+1(M) the exterior differential on a classical
differentiable manifoldM and by d:Är (M,A)→ Är+1(M,A) the graded exterior
differential on a graded manifold (M,A).

Example 2.1. In order to work out an example, let us choose a particular graded
manifold. LetM be a differentiable manifold and let us consider the graded mani-
fold (M,ÄM ), whereÄM denotes the sheaf of differential forms onM . Hence
dim(M,ÄM ) = (m, m) if m= dim M . Given a coordinate system (y1, . . . , ym)
on M , we can build up a system of adapted graded coordinates: (yi , dyi ). Accord-
ing to our way of denoting graded coordinates, (xi ), i = −m, . . . ,−1, 1,. . . , m,
we havexi = yi , x−i = dyi , i = 1, . . . , m. A graded curveγ : R1|1→ (M,ÄM )
is determined by a pair of mapsγ : R→ M, γ ∗: Ä(M)→ R1|1. Note that the
homomorphismγ ∗ is not necessarily the pull-back map ofγ : R→ M. We have

γ ∗(yi ) = yi ◦ γ = f i (t),

γ ∗(dyi ) = gi (t)s,
f i , gi ∈ C∞(R); i = 1, . . . , m. (1)

If γ ∗ is the pull-back ofγ : R→ M , thengi = ( f i )′. Also note the following—in
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principle—disappointing fact: Ifα ∈ Ä(M) is a differentiable form without 0 and
1-degree parts, thenγ ∗(α) = 0.

3. GRADED FIRST-ORDER JET BUNDLE

The usual coordinate description of jet bundles does not work with graded
manifolds. A more intrinsic construction of graded jet bundles, entailing further
algebraic formalizations, is needed. This is done in Hern´andez Ruip´erez and Mu˜noz
Masqué (1984) and we do not repeat it here. According to this construction we
can define the graded 1-jet bundleJ1(R1|1, (M,A)) of local sections ofp1:R1|1×
(M,A)→ R1|1; its graded dimension is (1+ 2m+ n, 1+m+ 2n), dim(M,A) =
(m, n). We remark that the base manifold underlyingJ1(R1|1, (M,A)) is not equal
to J1(R, M). The graded ring ofJ1(R1|1, (M,A)) is denoted byA1. Also we denote
the graded ring ofR1|1× (M,A) by A0 as J0(R1|1, (M,A)) = R1|1× (M,A).
The graded fibred coordinates on first-order jet bundles are defined in Hern´andez
Ruipérez and Mu˜noz Masqu´e (1984) and Monterde (1992a); we denote them
by (t, s, xi ; xi

t ; xi
s), i = −n, . . . ,−1, 1,. . . , m, with |t | = |xi | = |xi

t | = |xh
s | = 0,

and|s| = |xh| = |xh
t | = |xi

s| = 1, for h = −n, . . . ,−1; i = 1, . . . , m.
We remark that the intrinsic algebraic construction of graded jet bundles can

produce shocking facts like:j 1(γ )∗(xi
s) = 0 for every local sectionγ : R1|1→

R1|1× (M,A), wheni > 0.

3.1. Curves and the First-Order Jet Bundle

As is well known, a variation of a classical curveγ :R→ M is a 1-parameter
family of curves ¯γ t̄ (t) (t̄ ∈ R being the variational parameter) such that ¯γ0 = γ .
According to our philosophy of substitutingR1|1 for R, a variation of a graded
curve on a graded manifold,γ : R1|1→ (M,A), must also be aR1|1-parameter
family of graded curves.

We exclusively consider variations of a curve induced by a graded vector
field. In the classical case, the variations of a curve induced by a vector field are
just the composition of the curve with the integral flow of the vector field. It can
be shown that any even graded vector field can be integrated by simply using an
even parameter, but the situation is different in the odd case.

Let us briefly recall the problem of existence and uniqueness of solutions
of first-order superdifferential equations that have been studied in Monterde and
Sánchez-Valenzuela (1993). The first fact to note is that the parameter space in the
graded setting isR1|1 and that the problem of founding the integral flow of a graded
vector field must be stated in terms of this parameter space. Second, once we have
chosen the parameter space, we must choose a model of graded vector field on it.
It is easy to check that there are three possible graded Lie algebra structures on
R1|1 each giving rise to a different model of right-invariant graded vector field. For
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example, for the additive structure (the one we use in what follows) the model of
graded vector field is given by∂/∂t + ∂/∂s.

Let X be a graded vector field on the graded manifold (M,A). We say that
0: R1|1× (M,A)→ (M,A) is the flow ofX if together with an initial condition
the following equation holds:

evt=0 ◦
(
∂

∂t
+ ∂

∂s

)
◦ 0∗ = evt=0 ◦ 0∗ ◦ X,

where evt=0 is the map defined byevt=0 ( f (t)+ g(t)s) = f (0). In Monterde
and Sánchez-Valenzuela (1993), it is shown that any graded vector field can be
integraded—in the previous sense—by means of integral curves parametrized on
R1|1. It is also shown there that if the homogeneous partsX0, X1 of X satisfy the
equations [X0, X1] = [X1, X1] = 0, then the previous equation also holds without
the evaluation map; i.e.,(

∂

∂t
+ ∂

∂s

)
◦ 0∗ = 0∗ ◦ X. (2)

Moreover the flow induces an action of the additive Lie group structure ofR1|1

on the supermanifold (M,A) and then, a kind of relation like0t1,s1 ◦ 0t2,s2 =
0t1+t2,s1+s2 is valid.

Example 3.1. Let us come back to the graded manifold (M,ÄM ). Graded vector
fields on it are derivations of the graded algebraÄM . For example, given a vector
field onM , the Lie derivative,LX, is an even graded vector field on (M,ÄM ). The
integral flow of this graded vector field is given by8∗̄t , the pull-back of the integral
flow8t̄ of X. No odd parameter is needed in order to integrate even vector fields.
Therefore the variation of a graded curve produced by the graded vector fieldLX

is given by

γ ∗ ◦8∗̄t (yi ) = γ ∗(yi ◦8t̄ ) = f i (t, t̄),

γ ∗ ◦8∗̄t (dyi ) = γ ∗(dyi ◦8t̄ ) = gi (t, t̄)s.
i = 1, . . . , m.

Example 3.2(cf. Monterde and S´anchez-Valenzuela, 1993). On the graded mani-
fold (M,ÄM ) the exterior derivatived is an example of an odd vector field. Its
integral flow is given by the map0 = (0, 0∗) : R1|1× (M,ÄM )→ (M,ÄM ),
with 0 = πM : R× M → M and0∗: Ä(M)→ AR1|1×(M,ÄM ) is given by0∗(α) =
α + s̄dα, wheret̄ , s̄ are the graded coordinates inR1|1. Therefore the variation of
a graded curve (1), produced by the graded vector fieldd, is given by

γ ∗ ◦ 0∗(yi ) = γ ∗(yi + s̄dyi ) = f i (t)+ gi (t)s̄s,

γ ∗ ◦ 0∗(dyi ) = γ ∗(dyi ) = gi (t)s.
i = 1, . . . , m. (3)
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Example 3.3. Let us describe the 1-jet prolongation of a graded curveγ on
(M,ÄM ). If γ ∗ is given by (1), thenj 1γ is determined by the following equations:

j 1(γ )∗
(
xi

t

) = ∂

∂t
( f i (t)) = ( f i )′(t),

j 1(γ )∗
(
xi

s

) = ∂

∂s
(γ ∗(yi )) = 0,

j 1(γ )∗
(
x−i

t

) = ∂

∂t
(gi (t)s) = (gi )′(t)s,

j 1(γ )∗
(
x−i

s

) = ∂

∂s
(gi (t)s) = gi (t). (4)

Moreover, for the curves (3), given by the variations produced by the graded vector
field d, we have

j 1(γt̄ ,s̄)
∗(xi

t

) = ∂

∂t
( f i (t)+ gi (t)s̄s) = ( f i )′(t)+ gi (t))′s̄s,

j 1(γt̄ ,s̄)
∗(xi

s

) = ∂

∂s
(γ ∗̄t ,s̄(y

i )) = ∂

∂s
( f i (t)+ gi (t)s̄s) = −gi (t)s̄,

j 1(γt̄ ,s̄)
∗(x−i

t

) = ∂

∂t
(gi (t)s) = (gi )′(t)s,

j 1(γt̄ ,s̄)
∗(x−i

s

) = ∂

∂s
(gi (t)s) = gi (t). (5)

Let us recall that fori > 0 we have j 1(γ )∗(xi
s) = 0 for any curveγ . This fact

could induce to think that the coordinatexi
s is useless in the 1-jet bundle. Why to

work with an algebraic construction of graded jet bundles which produces graded
coordinates that vanish when evaluated at any curve? The reason is now clear
after (5). From the second equation in (5) we see that this is no longer true for the
R1|1-variations of curves. This fact shows that such a coordinate is needed.

4. VARIATIONAL PROBLEMS IN SUPERMECHANICS

4.1. Berezinian Densities onR1|1

Below we recall the construction of the Berezinian sheaf ofR1|1 (for the gen-
eral case, see Hern´andez Ruip´erez and Mu˜noz Masqu´e, 1985; Monterde, 1992a).
Let P1(R1|1) (resp.Ä1

R1|1) be the sheaf of differential operators of order≤1 (graded

1-forms) onR1|1. We have Ber(R1|1) = Ä1
R1|1 ⊗ P1(R1|1)/K1, whereK1 is the right

R1|1-submodule of the operatorsP such that for everyf ∈ R1|1 with compact
support, there exists an ordinary 0-form with compact supportg ∈ R1|1 satisfying
dg= P( f )˜. We denote by [P] the coset ofP ∈ Ä1

R1|1 ⊗ P1(R1|1) in Ber(R1|1). A
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basis of Ber(R1|1) is then given by [dt ⊗ ∂/∂s]. The Berezinian integral is defined
as follows: ∫

Ber
ξ =

∫
R

P(1) .̃

whereξ = [ P] ∈Ber(R1|1) is a section with compact support. In the graded setting
there is another kind of integration: The graded integral. For every graded 1-form
ω onR1|1 with compact support we set:∫

R1|1
ω =

∫
R
ω̃,

whereω̃ is the image ofω in the canonical homomorphismÄ1
R1|1(R1|1)→ Ä1(R).

Consequently, for every graded functionf = f0(t)+ f1(t)s ∈ C∞(R)⊗3 · R
with compact support, we have∫

R1|1
dt · f =

∫
R

f0 dt,
∫

Ber

[
dt ⊗ ∂

∂s

]
f =

∫
R

f1 dt.

This shows that the graded integral
∫
R1|1 integrates on the first component off ,

while the Berezinian integral
∫

Ber integrates on the last component off .

4.2. The Sheaf of First-Order Berezinian Densities

Once we choose the integration procedure, we can state variational prob-
lems related with this integral, but first we need to define the variational ob-
jects that determine the variational problem. A construction, similar to that of the
Berezinian sheaf, leads us to the sheaf Ber1(R1|1, (M,A)): Its sections are of the
form [dt ⊗ d

ds]L, with L ∈ A1, and d
ds being the total (or horizontal) derivative with

respect tos (see Monterde, 1992a). These sections are the objects that define a
variational problem.

4.3. Action Functional

Every global sectionξ ∈ Ber1(R1|1, (M,A)) gives rise to a functionalLξ
defined by the formula

Lξ (γ ) =
∫

Ber
( j 1γ )∗ξ =

∫
Ber

( j 1γ )∗
[
dt ⊗ d

ds

]
L =

∫
Ber

[
dt ⊗ ∂

∂s

]
( j 1γ ∗L)

on the space of the sections ofp1: R1|1× (M,A)→ R1|1 for which the integral
above converges.
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If L is even, then
∫

Ber( j 1γ )∗ξ vanishes for any curveγ . Indeed,∫
Ber

( j 1γ )∗ξ =
∫

Ber

[
dt ⊗ ∂

∂s

]
( j 1γ ∗L) = 0,

since j 1γ ∗L ∈ R1|1 is even and hence it is of the formf (t); so∂/∂s( f (t)) = 0.
AsR-variations ofγ does not change the degree ofj 1γ ∗L, the action functional
vanishes identically. This fact again evidences the need of usingR1|1-variations
of curves. When doing this, the expression under the Berezin integral becomes an
element inR1|1× R1|1; i.e., the integrand depends on the four graded coordinates
{t, s, t̄ , s̄}.

Let0:R1|1× (M,A)→ (M,A) be the integral flow of a vector fieldX. The
variation of a curveγ is nothing but the composition

R1|1× R1|1 (id×γ )−−−→ R1|1× (M,A)
0

−→ (M,A).

For the sake of simplicity, let us denote this composition byγ t̄ ,s̄. Thus, j 1γ ∗̄t ,s̄L is
an element of the formL0(t, t̄)L1(t, t̄)s+ L2(t, t̄)s̄+ L3(t, t̄)ss̄ in R1|1× R1|1.

Remark 4.1. It can easily be shown that the variation by means of an odd vector
field—e.g., the exterior derivatived on the graded manifold (M,ÄM ), Eq. (5)—of
an action functional defined by a classical Lagrangian function, does not vanish;
e.g.,L = 1

2

∑m
i=1(xi

t )
2.

4.4. The Variational Principle

In order to obtain critical sections, i.e., curvesγ such thatLξ (γ ) =∫
Ber( j 1γ )∗ξ takes the minimum for any variation produced by a vector field, we

must compute the derivative ofLξ (γ t̄ ,s̄) =
∫

Ber( j 1γ ∗̄t ,s̄)ξ with respect to∂/∂ t̄ +
∂/∂ s̄, for this vector field is the one playing the role of∂/∂ t̄ in the classical
integration problem of a vector field (see Section 3.1 and Monterde and S´anchez-
Valenzuela, 1993). The derivative of the variationγ t̄ ,s̄ with respect to the model
vector field∂/∂ t̄ + ∂/∂ s̄ onR1|1, evaluated at 0, is

ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄) ◦ γ ∗̄t ,s̄ = ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄) ◦ (id× γ ∗) ◦ 0∗

= ev|t̄=0 ◦ (id× γ ∗) ◦ (∂/∂ t̄ + ∂/∂ s̄) ◦ 0∗

= γ ∗ ◦ ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄) ◦ 0∗

= γ ∗ ◦ ev|t̄=0 ◦ 0∗ ◦ X

= γ ∗ ◦ X,

where we have used thatev|t̄=0 ◦ 0∗ = id, by virtue of the initial condition of
superdifferential equations.
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In Monterde and S´anchez-Valenzuela (1993), it is shown that the usual re-
lationship between Lie derivatives on forms, exterior differentiation, and interior
multiplication, holds true in the theory of supermanifolds when one uses the right
notion of integral flow of graded vectors fields. Thus, e.g., ifL is an element ofA
and,γ t̄ ,s̄ denotes the integral flow of a graded vector fieldX, then

ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄)γ ∗̄t ,s̄(L) = γ ∗(X(L)) = γ ∗(LX L).

The same holds when lifting to the first-order jet bundle. IfL ∈ A1, then

ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄) j 1γ ∗̄t ,s̄(L) = j 1γ ∗
(
X(1)(L)

) = j 1γ ∗(LX(1) L),

whereX(k) denotes the prolongation ofX to thek-th order jet bundle andLX(1)

denotes the Lie derivative with respect toX(1) (see Monterde and Mu˜noz Masqu´e,
1992). Therefore, in our case, we obtain

ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄)
∫

Ber

[
dt ⊗ ∂

∂s

]
j 1γ ∗̄t ,s̄(L)

=
∫

Ber

[
dt ⊗ ∂

∂s

]
ev|t̄=0 ◦ (∂/∂ t̄ + ∂/∂ s̄) j 1γ ∗̄t ,s̄(L)

=
∫

Ber
j 1γ ∗

[
dt ⊗ ∂

∂s

] (
X(1)(L)

)
=
∫

Ber
j 1γ ∗

(
LX(1)

[
dt ⊗ ∂

∂s

]
(L)

)
.

(For the definition of the Lie derivative of a Berezinian density see Hern´andez
Ruipérez and Mu˜noz Masqu´e, 1987.) Therefore, given a sectionγ , we can define
a linear functionalδγLξ : Derc(A)→ R, called thefirst variation ofLξ atγ , where
Derc(A) ⊂ Der(A) is the ideal of vector fields with compact support, as follows:

δγLξ (X) =
∫

Ber
( j 1γ )∗

(
LX(1)ξ

)
.

A sectionγ is said to be aBerezinian critical sectionfor the functionalLξ if
δγLξ = 0.

5. EULER–LAGRANGE EQUATIONS

On the other hand, we can also define the concept of a critical section using the
other way of integration: The graded integration. Every global sectionω ∈ Ä1(J2)
of the sheaf of differential 1-forms on the second-order jet bundle gives rise to a
functionalLω. (The need of the shift to the second-order jet bundle will be clear
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after Theorem 5.1.) The functional is defined by the formula

Lω(γ ) =
∫
R1|1

( j 2γ )∗ω

on the space of sections ofp1:R1|1× (M,A)→ R1|1 for which the above integral
converges. Given a sectionγ , we can define a linear functionalδγLω: Derc(A0)→
R, called thefirst variation ofLω at γ , as follows:

δγLω(X) =
∫
R1|1

( j 2γ )∗(LX(2)ω).

A sectionγ is said to be agraded critical sectionfor the functionalLω if δγLω =
0; i.e., if the first variation ofLω vanishes atγ . The fundamental fact is that a
Berezinian variational problem is equivalent to a graded Lagrangian variational
problem of higher order. The following theorem establishes such an equivalence:

Theorem 5.1(Comparison Theorem, Monterde and Mu˜noz Masqu´e, 1992). Let

ξ =
[
dt ⊗ d

ds

]
L ∈ Ber1(R1|1, (M,A)), L ∈ A1,

be a first-order Berezinian Lagrangian density, and let

λξ = dt
dL

ds
∈ Ä1(J2).

Then, for every sectionγ , we haveδγLξ = δγLλξ . Consequently, we can associate
in a canonical way an equivalent graded Lagrangian densityλξ to each Berezinian
Lagrangian densityξ .

In this comparison result, the key point is that the link between Berezinian
Lagrangian densities and graded ones, is given by the total derivative with respect
to the odd coordinate. This will be recalled in the definition of Poincar´e–Cartan
forms.

5.1. Euler–Lagrange Equations of a Berezinian Density

Theorem 5.2 (Monterde, 1992a). With the same notations as in the previous
theorem, the Euler–Lagrange equations for the first-order Berezinian Lagrange
densityξ are the following:

( j 2γ )∗
(
∂L

∂xi
− d

dt

(
∂L

∂xi
t

)
− (−1)|x

i | d

ds

(
∂L

∂xi
s

))
= 0,

i = −n, . . . ,−1, 1,. . . , m.
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Remark 5.3. It should be remarked that Berezinian variational problems are the
only producing Euler–Lagrange equations with even and odd variables treated
in the same equal footing. For graded variational problems, the corresponding
Euler–Lagrange equations distinguish between even and odd coordinates.

Example 5.4. Let us consider a graded manifold with null odd dimension; i.e.
(M, C∞M ), and a classical first-order Lagrangian function on it,L ∈ C∞(J1(R, M)).
Then, the equations above reduce to the classical Euler–Lagrange equations as the
Lagrangian function does not depend on variablesxi

s.

Remark 5.5. Let us recall (cf. Section 4.3) that for an even Lagrangian, then
Lξ (γ ) vanishes for all curvesγ : R1|1→ (M,A). Nevertheless, when we consider
R1|1-variations of such a curves, then the action functional does not necessarily
vanish, and only those curvesγ verifying the Euler–Lagrange equations are critical
sections of the functional.

6. REGULARITY CONDITIONS

In the classical variational setting, a variational problem is said to be regu-
lar if there is a bijection between critical sections of the variational problem and
solutions to the corresponding Hamilton’s equations. The existence of such a bi-
jection is assured by the fact that the Hessian matrix of the Lagrangian function is
nondegenerate. We want to determine the regularity conditions in the graded varia-
tional setting. Developing the Euler–Lagrange equations associated to a Berezinian
Lagrangian density, we obtain

( j 2γ )∗
(

xh
tt

∂2L

∂xh
t ∂xi

t

+ · · ·
)
= 0,

where the dots denote terms involving derivatives of order≤1. In order to be able
to write these equations down in the form

( j 2γ )∗
(
xh

tt

) = Fh
(
γ ∗(xi ), ( j 1γ )∗

(
xh

t

)
, ( j 1γ )∗

(
xh

s

)
, ( j 1γ )∗

(
xh

ts

))
,

we must impose the matrix (∂2L/∂xh
t ∂xi

t ) to be nonsingular. In this case, the
problem is said to beregular. Hence, the Euler–Lagrange equations of a regular
Lagrangian are equivalent to a system of ordinary differential equations.

Proposition 6.1. Let L be a homogeneous graded function on J1(R1|1, (M,A)).

1. If |L| = 0, then L is regular if

det
(
∂2L/∂xh

t ∂xi
t

)∼ 6= 0, for h > 0, i > 0,
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and

det
(
∂2L/∂xh

t ∂xi
t

)∼ 6= 0, for h < 0, i < 0.

2. If |L| = 1, then L is regular if

det
(
∂2L/∂xh

t ∂xi
t

)∼ 6= 0, for h > 0, i < 0.

Remark 6.2. Note that the second matrix in the even case is skew-symmetric,
thus forcingn to be even, where dim(M,A) = (m, n). Also note that in the odd
case,m= n necessarily.

7. POINCARÉ–CARTAN FORMS

Let us again recall that in the classical variational setting, once we have a
regular variational problem, then there is also a bijection between the critical sec-
tions of the variational problem and the solutions to Hamilton’s equation, which
is defined in terms of the Poincar´e–Cartan form. So, our next objective is to find a
corresponding Poincar´e–Cartan form in the graded setting. In Hern´andez Ruip´erez
and Muñoz Masqu´e (1984, Definition 2.8), a canonical graded 1-form—called the
graded Poincar´e–Cartan form—is associated to each first-order graded Lagrangian
densityλ. Here, we denote by20(λ) the graded Poincar´e–Cartan form correspond-
ing to−λ. If λ = dt · f , in local coordinates we have

20(λ) = (dxi − dt · xi
t − ds · xi

s

) ∂ f

∂xi
t

+ λ,

where—as usual—we skip the index 0 in the indices running from negative to
positive values. The forms (dxi − dt · xi

t − ds · xi
s), i = −n, . . . ,−1, 1,. . . , m,

are called the standard contact forms on the 1-jet fibre bundle. Bearing the re-
lationship between Berezinian variational problems and graded variational ones
(Theorem 5.1) in mind, i.e.,

λξ = L d
ds

(dt · L),

it is natural to consider the graded 1-form

2ξ = L d
ds
20(dt · L)

as a Poincar´e–Cartan form associated to the Berezinian Lagrangian densityξ .
First of all, note that from the very definition of2ξ we obtain

2ξ =
(
dxi

s − dt · xi
st

) ∂L

∂xi
t

+ (−1)|x
i |(dxi − dt · xi

t − ds · xi
s

)
× d

ds

(
∂L

∂xi
t

)
+ dt · dL

ds
. (6)
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Remark 7.1. The Poincar´e–Cartan form thus defined is a well-defined differential
form. Indeed, let{t ′, s′} be another set of graded coordinates onR1|1. Then, there
are real functionsf, g such that both systems of graded coordinates are related by
t ′ = f (t), s′ = g(t)s, with g(t) 6= 0, f ′(t) 6= 0, wheref ′ denotes the derivative of
f with respect tot . Accordingly, we have

dt ′ = f ′(t) dt,
d

ds′
= 1

g

d

ds
,

and if a global sectionξ of the first-order Berezinian sheaf has the following two
expressions

ξ =
[
dt ⊗ d

ds

]
L =

[
dt ′ ⊗ d

ds′

]
L ′, L , L ′ ∈ A1,

the relationship between these two functions is given byL = ( f ′/g)L ′. The change
of coordinates inR1|1 induces the following change of coordinates inJ2:

xi
t ′ = xi

t / f ′, xi
s′ = xi

s/g, xi
s′t ′ = xi

st/g f ′.

According to this change of coordinates it is just a computation to check that the
Poincaré–Cartan form is well defined. Indeed,

2
′
ξ = L d

ds′

((
dxi − dt ′ · xi

t ′ − ds′ · xi
s′
) ∂L ′

∂xi
t ′
+ dt ′ · L ′

)
= L 1

g
d
ds

((
dxi − dt · xi

t − ds · xi
s

)∂((g/ f ′)L)

∂xi
t ′

+ dt · gL

)
= L d

ds

((
dxi − dt · xi

t − ds · xi
s

) ∂L

∂xi
t

+ dt · L
)
= 2ξ .

7.1. The Sub-BundleJ1,1(R1|1, (M,A))

For a classical variational problem, the configuration space is a manifoldM ,
and the Lagrangian is a functionL on J1(R, M) = R× TM. The Poincar´e–Cartan
form is a 1-form onR× TM (i.e., a sectionR× TM→ T∗(R× TM)), which
projects onto a mapR× TM→ T∗(R× M). The analogous projection process
can also be done in the graded setting. In principle, the Poincar´e–Cartan form lives
in the second order graded jet bundle but it should be noted that, from its local
expression,2ξ only depends on the coordinates (t, s, xi , xi

t , xi
s, xi

st); i.e.,2ξ does
not depend onxi

tt . Therefore, in order to develop a true Hamiltonian formalism,
it would be desirable to project this form onto an appropriate fibre bundle. This is
done below.
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Let J1,1(R1|1, (M,A)) ⊂ J1(R1|0, J1(R0|1, (M,A))) be the sub-bundle de-
fined byst = 0. Then, there exists a canonical submersion overR1|1,

π : J2(R1|1, (M,A))→ J1,1(R1|1, (M,A))

defined as follows: Each morphismf : R1|1→ (M,A) induces a family ft :
R0|1→ (M,A), t ∈ R, and, taking jets,j 1( ft ): R0|1→ J1(R0|1, (M,A)). By
composingj 1( ft )∗ with the structure morphism3 · (R)→ R we obtain [j 1( ft )]∗:
AJ1(R0|1,(M,A)) → R. Let

[ j 1( f )]∗: AJ1(R0|1,(M,A)) → C∞(R)

be the ring homomorphism defined by

[ j 1( f )]∗(a) (t) = [ j 1( ft )]
∗(a),

and let

[ j 1( f )]: R0|1→ J1(R0|1, (M,A))

be the corresponding morphism of graded manifolds. It is readily seen that the
mapping j 1,1( f ) = j 1([ j 1 f ]) takes values inJ1,1(R1|1, (M,A)), and also that

j 1,1: Mor(R1|1, (M,A))→ 0(J1,1(R1|1, (M,A)))

is a differential operator of second order. Consequently,j 1,1 must factor through
J2(R1|1, (M,A)), thus providing the desired submersion. From the previous local
expression for2ξ , we can conclude that2ξ isπ -projectable; its projection is also
denoted by2ξ .

Moreover, we remark that the role thatJ1(R, M) plays in the classical case,
is played byJ1,1(R1|1, (M,A)) in the graded case, but there is an outstanding
difference: WhereasJ1(R, M) is equal toR× TM, this is no longer true in the
graded case. The sub-bundleJ1,1(R1|1, (M,A)) is not the product ofR1|1 times the
supertangent. Anyone of the different definitions of the supertangent bundle exist-
ing in the literature does not provide the right dimension. The graded dimension
of this sub-bundle is (1+ 2m+ 2n, 1+ 2m+ 2n) and the dimensions of the pos-
sible supertangent bundle are (2m, 2n) (Kostant, 1977, 2.12) or (2m+ n, 2n+m)
(Sánchez-Valenzuela, 1986).

8. HAMILTON EQUATIONS

We are now ready to state the equivalence between the Berezinian Lagrangian
formalism and the Hamiltonian formalism in the graded case. Precisely,
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Theorem 8.1. A local sectionγ of the submersion p1: R1|1× (M,A)→ R1|1 is
a critical section for the Berezinian Lagrangian densityξ if and only if

( j 2γ )∗(ιXd2ξ ) = 0, (7)

for every vector field X on J2(R1|1, (M,A)) vertical overR1|1.

Proof: Let us start by takingX = ∂/∂x j
s for j = −n, . . . ,−1, 1,. . . , m. Then,

we have

( j 2γ )∗
(
ι ∂

∂x
j
s

d2ξ

)
= ( j 2γ )∗

(
−d

(
∂L

∂x j
t

)
+ ds · d

ds

(
∂L

∂x j
t

)
+ dt · ∂

∂x j
s

(
dL

ds

))

= ( j 2γ )∗
(
−dxk · ∂2L

∂xk∂x j
t

− dxk
t ·

∂2L

∂xk
t ∂x j

t

− dxk
s ·

∂2L

∂xk
s∂x j

t

+ ds · xk
s

∂2L

∂xk∂x j
t

+ ds · xk
ts

∂2L

∂xk
t ∂x j

t

+ dt ·
{[

∂

∂x j
s

,
d

ds

]
L − (−1)|x

j | d
ds

(
∂L

∂x j
s

)})

= ( j 2γ )∗dt

(
∂L

∂x j −
d

dt

(
∂L

∂x j
t

)
− (−1)|x

j | d
ds

(
∂L

∂x j
s

))
,

where we have used that contact forms vanish when pulling them back alongj 2γ

and also that [∂
∂x j

s
, d

ds] = ∂
∂x j . Next, takingX = ∂/∂x j , we have

( j 2γ )∗
(
ι ∂

∂x j
d2ξ

)
= ( j 2γ )∗

(
−(−1)|x

j |d

(
d

ds

(
∂L

∂x j
t

))
+ dt · ∂

∂x j

(
dL

ds

))

= (−1)|x
j |L ∂

∂s
( j 2γ )∗

(
−d

(
∂L

∂x j
t

)
+ dt · ∂L

∂x j

)

= (−1)|x
j |L ∂

∂s
( j 2γ )∗

(
−dxk · ∂2L

∂xk∂x j
t

− dxk
t ·

∂2L

∂xk
t ∂x j

t

− dxk
s ·

∂2L

∂xk
s∂x j

t

+ dt · ∂L

∂x j

)
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= (−1)|x
j |L ∂

∂s
( j 2γ )∗

(
−dt ·

{
d

dt

(
∂L

∂x j
t

)
+
(
∂L

∂x j

)}

+ ds · d

ds

(
∂L

∂x j
t

))

= (−1)|x
j |( j 2γ )∗

(
−dt · d

ds

{
d

dt

(
∂L

∂x j
t

)

− d

ds

(
∂L

∂x j
s

)
+ ∂L

∂x j

})
.

Finally, takingX = ∂/∂x j
t or X = ∂/∂x j

ts we deduce that (j 2γ )∗(ιXd2ξ ) directly
vanishes.

Therefore, for every vertical vector fieldX, we have

( j 2γ )∗(ιXd2ξ ) = ( j 2γ )∗
(
X
(
xi

s

)
Äi + (−1)|x

i |X(xi )
(
L d

ds
Äi
))

, (8)

where

Äi =
(
∂L

∂xi
− d

dt

(
∂L

∂xi
t

)
− (−1)|x

i | d
ds

(
∂L

∂xi
s

))
dt.

¤

In the previous theorem, the Eq. (7) is called theHamilton equationfor the
Berezinian Lagrangian densityξ .

The following result states that—as in the ungraded case—holonomy of the
solutions to Hamilton equations is a consequence of regularity.

Theorem 8.2. Let 2ξ be the graded1-form associated to the Berezinian
Lagrangian densityξ = [dt ⊗ d

ds]L. We have

(i) If γ is a Berezinian critical section, then( j 1,1γ )∗(ιXd2ξ ) = 0 for every
vector field X on J1,1(R1|1, (M,A)) vertical overR1|1.

(ii) Conversely, assume L is regular and thatγ̄ :R1|1→ J1,1(R1|1, (M,A)) is
a section such that,̄γ ∗(ιXd2ξ ) = 0 for every vector field X on J1,1(R1|1,
(M,A)) vertical overR1|1. Then, there exists a unique Berezinian critical
sectionγ such thatγ̄ = j 1,1(γ ).

Proof: The first part of the statement follows taking into account that formula (8)
in the proof of the previous theorem remains true forj 1,1γ . For the second part,
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we just use the following equations and the fact thatL is regular:

γ ∗
(
ι ∂

∂xh
st

d2ξ

)
= (−1)|x

h||xi |γ̄ ∗
((

dxi − dt · xi
t − ds · xi

s

) ∂2L

∂xh
t ∂xi

t

)
= 0,

γ ∗
(
ι ∂

∂xh
t

d2ξ

)
= (−1)|x

h|(1+|xi |)γ̄ ∗
((

dxi
s − dt · xi

st

) ∂2L

∂xh
t ∂xi

t

+ (−1)|x
i |(dxi − dt · xi

t − ds · xi
s

) d

ds

(
∂2L

∂xh
t ∂xi

t

))
= 0. ¤

9. CANONICAL COORDINATES

From now on we assume that the Lagrangian function under consideration is
homogeneous.

The following useful result involving regular Lagrangians allows us to con-
struct a set of graded coordinates onJ1,1(R1|1, (M,A)) adapted to the variational
problem.

Proposition 9.1. Let L be a regular homogeneous Lagrangian function, then the
set of graded functions(

t, s, xi , xi
s, pi = ∂L

∂xi
t

, pi ,s = d

ds

(
∂L

∂xi
t

))
(9)

is a system of graded coordinates on J1,1(R1|1, (M,A)).

Remark 9.2. The degrees of the new coordinates are|pi | = |L| + |xi |, |pi ,s| =
|L| + |xi | + 1.

Proof: It is easy to check that the graded Jacobian of the set of functions
(t, s, xi , xi

s, pi , pi ,s) with respect to the graded coordinates (t, s, xi , xi
t , xi

s, xi
st)

is, up to a sign, equal to det(∂2L/∂xh
t ∂xi

t ). Thus,L is regular if and only if the
Jacobian is invertible; i.e., if and only if

det

(
∂2L

∂xh
t ∂xi

t

)∼
6= 0.

This condition is equivalent to the regularity of the homogeneous functionL. ¤

Let us now write the graded Poincar´e–Cartan form (6) of a regular homoge-
neous LagrangianL in terms of the canonical coordinates (9). We have

2ξ =
(
dxi

s − dt · xi
st

)
pi + (−1)|x

i |(dxi − dt · xi
t − ds · xi

s

)
pi ,s + dL

ds
dt

= dxi
s · pi + (−1)|x

i |dxi · pi ,s + dt Ht + ds · Hs,
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where

Ht = −xi
st pi − (−1)|x

i |xi
t pi ,s + dL

ds
= d

ds

(−xi
t pi + L

)
,

Hs = (−1)1+|x
i |xi

s pi ,s = d

ds

(
xi

s pi
)
. (10)

These two functions,Ht andHs, play the role of Hamiltonian functions, so they
deserve to be called thet-Hamiltonian ands-Hamiltonian respectively. Note that
|Ht | = |L| + 1, |Hs| = |L|.

10. THE RADICAL OF THE POINCAR É–CARTAN FORM

Below we compute the radical of the exterior differential of the Poincar´e–
Cartan form

d2ξ = −dxi
s ∧ dpi − (−1)|x

i |dxi ∧ dpi ,s − dt ∧ dHt − ds∧ dHs.

Note that d2ξ is a 2-form whose degree depends on the degree ofL; in fact,
|2ξ | = |L| + 1.

If X = X0+ X1 is an arbitrary graded vector field, then

ιXd2ξ = − X0
(
xi

s

)
dpi + dxi

s · X0(pi )− X1
(
xi

s

)
dpi − (−1)|x

i |dxi
s · X1(pi )

− (−1)|x
i |X0(xi ) dpi ,s + (−1)|x

i |dxi · X0(pi ,s)

− (−1)|x
i |X1(xi ) dpi ,s + dxi · X1(pi ,s)

− X0(t) dHt + dt · X0(Ht )− X1(t) dHt + dt · X1(Ht )

− X0(s) dHs + ds · X0(Hs)− X1(s) dHs − ds · X1(Hs).

The equationιXd2ξ = 0 can be splitted into six graded equations according to the
coefficient of the differentials of the graded coordinates. Again these equations can
be splitted according to their parity. Thus the coefficients ofdxi , dpi , dxi

s, dpi ,s

give rise to the following eight equations:

X1
(
xi

s

)+ X1(t)
∂Ht

∂pi
= 0, X0

(
xi

s

)+ X0(t)
∂Ht

∂pi
= 0,

X0(pi )− X0(t)
∂Ht

∂xi
s

− X0(s)pi ,s = 0,

X1(pi )− (−1)|x
i |X1(t)

∂Ht

∂xi
s

− X1(s)pi ,s = 0,
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X0(xi ) + (−1)|x
i |X0(t)

∂Ht

∂pi ,s
− X0(s)xi

s = 0,

X1(xi ) + (−1)|x
i |X1(t)

∂Ht

∂pi ,s
− X1(s)xi

s = 0,

X1(pi ,s) − (−1)|x
i |X1(t)

∂Ht

∂xi
= 0, X0(pi ,s)− (−1)|x

i |X0(t)
∂Ht

∂xi
= 0. (11)

The consequence of this set of equations is the following:

Theorem 10.1. The radical ofd2ξ is a free module of rank 2 and of type(1, 1),
with free basis the pair of graded vector fields Xt , Xs uniquely determined by the
conditions

Xt (t) = 1, Xt (s) = 0, |Xt | = 0,

Xs(t) = 0, Xs(s) = 1, |Xs| = 1.

Moreover the radical is involutive and[Xt , Xs] = [Xs, Xs] = 0.

Remark 10.2. The two commuting relations satisfied byXt and Xs above, are
precisely the required conditions for the flow0 of Xt + Xs to satisfy (2). This
means thatXt + Xs is a distinguished vector field from the point of view of the
integration problem (see Section 3.1). Equations (11) together with conditions
ιXt+Xsd2ξ = 0 are called the graded Euler–Lagrange equations of the Berezinian
variational problem defined byξ .

Finally, the odd and even parts of the coefficients ofdt andds in ιxd2ξ = 0,
can be written, for a graded vector field satisfying the previous four, as

X0(s)
d Ht

ds
= 0, X1(s)

d Ht

ds
= 0,

X1(t)
d Ht

ds
= 0, X0(t)

d Ht

ds
= 0. (12)

11. HAMILTON’S EQUATIONS IN CANONICAL COORDINATES

Next, let us come back to the solutions of Hamilton’s equations. We want
to determine those curves ¯γ : R1|1→ J1,1 such that ¯γ ∗(ιXd2ξ ) = 0 for all X ∈
X (J1,1) vertical overR1|1.

Theorem 11.1. Let ξ = [dt ⊗ d
ds]L be a regular homogeneous Berezinian

Lagrangian density on J1(R1|1, (M,A)). The mapγ 7→ j 1,1(γ ), states a bijec-
tion between the set of critical sections ofξ and the set of curves̄γ : R1|1→
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J1,1(R1|1, (M,A)) that satisfy the following system of six differential equations:

(−1)|x
i | ∂(γ̄ ∗pi ,s)

∂t
= γ̄ ∗

(
∂Ht

∂xi

)
,

∂(γ̄ ∗pi ,s)

∂s
= 0,

∂(γ̄ ∗pi )

∂t
= γ̄ ∗

(
∂Ht

∂xi
s

)
,

−∂
(
γ̄ ∗x j

s
)

∂t
= γ̄ ∗

(
∂Ht

∂pi

)
,

∂
(
γ̄ ∗xi

s

)
∂s

= 0,

−(−1)|x
i | ∂
(
γ̄ ∗xi

)
∂t

= γ̄ ∗
(
∂Ht

∂pi ,s

)
. (13)

The differential equations have been written in canonical coordinates.

Proof: First, note

ι ∂

∂xi
d2ξ = −(−1)|x

i |dpi ,s + dt
∂Ht

∂xi
+ (−1)|x

i |ds
∂Hs

∂xi
.

We know that ¯γ ∗(t) = t, γ̄ ∗(s) = s as γ̄ = j 1,1(γ ) for some curveγ : R1|1→
(M,A), becauseL is regular (Theorem 8.2-(ii)). Moreover, the equation
γ̄ ∗(ι ∂

∂xi
d2ξ ) = 0 can be written as

(−1)|x
i | d(γ̄ ∗pi ,s) = dt · γ̄ ∗

(
∂Ht

∂xi

)
+ (−1)|x

i |ds · γ̄ ∗
(
∂Hs

∂xi

)
,

and this equation is equivalent to the following two

(−1)|x
i | ∂(γ̄ ∗pi ,s)

∂t
= γ̄ ∗

(
∂Ht

∂xi

)
,

∂(γ̄ ∗pi ,s)

∂s
= 0,

where the definition of the functionHs has been recalled. The same procedure
with the rest of the vertical coordinate vector fields gives the following equations:

∂(γ̄ ∗pi )

∂t
= γ̄ ∗

(
∂Ht

∂xi
s

)
,

∂(γ̄ ∗pi )

∂s
= γ̄ ∗(pi ,s),

∂
(
γ̄ ∗xi

s

)
∂t

= −γ̄ ∗
(
∂Ht

∂pi

)
,

∂
(
γ̄ ∗xi

s

)
∂s

= 0,

∂(γ̄ ∗xi )

∂t
= −(−1)|x

i |γ̄ ∗
(
∂Ht

∂pi ,s

)
,
∂(γ̄ ∗xi )

∂s
= γ̄ ∗(xi

s

)
.

Two of these equations are tautological as ¯γ = j 1,1(γ ). Thus, only six equations
are relevant. ¤
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12. SOLVING THE HAMILTON EQUATIONS

In the classical setting, it is well known that the solutions to Hamilton equa-
tions are uniquely defined by the points in the tangent bundle; i.e., by tangent
vectors. Each tangent vector acts as an initial condition for the Hamilton equa-
tions, or, equivalently, as the initial point of an integral curve of the Euler vector
field.

Now, in order to solve the Hamilton equations it is necessary to introduce
the notion of an initial condition in this setting. Precisely, aninitial condition for
the system of equations in Theorem 11.1 is a gradedR-algebra homomorphism
χ : A(J1,1)→ 3 · R such thatχ (s) = s, χ (t) = 0. Let M1,1 be the underlying
manifold toJ1,1. A homomorphismχ is said to be over the pointz ∈ M1,1 if the
composition map

A(J1,1)
χ−→ 3 · R ∼−→ R

coincides with the linear formevz( f ) = f̃ (z). In this case, we writeχ = χz. A
curveγ̄ : R1|1→ J1,1 is said to satisfy the initial conditionχ if the composition

A(J1,1)
γ̄ ∗−→ A(R1,1)

ev(t=0)−−−→ 3 · R,

whereev(t=0)( f (t)+ g(t)s) = f (0)+ g(0)s, coincides withχ .

Theorem 12.1. Given an initial conditionχ , there is a unique solution̄γ of the
Eqs.(13) that satisfies the initial conditionχ .

The existence of the Euler vector field in this setting (i.e., a vector field
whose integral curves are in one-to-one correspondence with the extremals of the
variational problem) is assured by the following

Theorem 12.2. Let L be a regular homogenous Lagrangian and let X be the
graded vector field belonging to the radical ofd 2ξ defined by the conditions
X(t) = 1, X(s) = 1 (i.e., X= Xt + Xs). Given an initial conditionχ :A(J1,1)→
3 · R, let χ̄ : A(R1|1× J1,1)→ A(R1|1) be the composition

A(R1|1× J1,1)
id⊗χ−→R1|1⊗3 · R ev(s′=0)−→ C∞(R)⊗3 · R = A(R1|1).

Let 0 be the integral flow of X and let̂γ : R1|1→ J1,1 be the curve defined
by the conditionγ̂ ∗ = χ̄ ◦ 0∗. Then,γ̂ is the unique solution to the differen-
tial equations(13) that satisfies the initial conditionχ ′ = ev(t=0) ◦ γ̂ ∗. Moreover
χ = χ ′, thus, X determines the whole set of solutions to the variational problem
defined by the Lagrangian L.
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Proof: We first remark thatχ ′ is an initial condition as we have

χ ′(s) = (ev(t=0) ◦ γ̂ ∗)(s) = (ev(t=0) ◦ χ̄ ◦ 0∗)(s)

= (χ ◦ ev(t ′=0) ◦ 0∗)(s) = χ (s) = s.

Similarly,χ ′(t) = 0. Sinceev(t ′=0) ◦ 0∗ = id, we concludeχ ′ = χ . We have only
to prove that ˆγ is a solution to the Eqs. (13). Indeed,

γ̂ ∗(X(xi )) = (−1)1+|x
i |γ̂ ∗

(
∂Ht

∂pi ,s
+ xi

s

)
= (χ̄ ◦ 0∗ ◦ X)(xi ) =

(
χ̄ ◦

(
∂

∂t ′
+ ∂

∂s′

)
◦ 0∗

)
(xi )

=
((

∂

∂t
+ ∂

∂s

)
◦ γ̂ ∗

)
(xi ) = ∂γ̂ ∗(xi )

∂t
+ ∂γ̂

∗(xi )

∂s
.

Equating now the homogeneous parts, we obtain

∂γ̂ ∗(xi )

∂t
= −(−1)|x

i |γ̂ ∗
(
∂Ht

∂pi ,s

)
,

∂γ̂ ∗(xi )

∂s
= −(−1)|x

i |γ̂ ∗
(
xi

s

)
.

The first set of equations are exactly the equations in (13) and, the second set is
tautological. Hence from the conditions

γ̂ ∗
(
X
(
xi

s

)) = −γ̂ ∗ (∂Ht

∂pi

)
= ∂γ̂ ∗

(
xi

s

)
∂t

+ ∂γ̂
∗(xi

s

)
∂s

,

we obtain

∂γ̂ ∗
(
xi

s

)
∂t

= −γ̂ ∗
(
∂Ht

∂pi

)
,

∂γ̂ ∗
(
xi

s

)
∂s

= 0.

These equations are exactly two groups of equations in (13). Also, from

γ̂ ∗(X(pi )) = γ̂ ∗
(
∂Ht

∂xi
s

+ pi ,s

)
,

we obtain

∂γ̂ ∗(pi )

∂t
= γ̂ ∗

(
∂Ht

∂xi
s

)
,

∂γ̂ ∗(pi )

∂s
= γ̂ ∗(pi ,s).

The first set of equations is exactly another group of equations in (13) and the
second set is tautological. Finally, from

γ̂ ∗(X(pi ,s)) = (−1)|x
i |γ̂ ∗

(
∂Ht

∂xi

)
,
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we obtain

∂γ̂ ∗(pi ,s)

∂t
= (−1)|x

i |γ̂ ∗
(
∂Ht

∂xi

)
,

∂γ̂ ∗(pi ,s)

∂s
= 0.

These equations are exactly the two first groups of equations in (13).¤

Remark 12.3. The vector field of motionX = Xt + Xs, also called the Euler
vector field, deserves some words. This vector field is defined by the following
conditions: (i) its even part,Xt , projects onto∂/∂t , (ii) its odd part,Xs, projects onto
∂/∂s, and (iii) Xt , Xs is a basis of the radical of the differential of the Poincar´e–
Cartan form.

Moreover, if0 denotes the integral flow ofXt + Xs then, due to the commu-
tation relations [Xt , Xs] = [Xs, Xs] = 0, the Euler vector field and the integration
model∂/∂t + ∂/∂s are0-related (see the Eq. (2) and Remark 10.2).

Its final local expression is the following:

X = ∂

∂t
+ ∂

∂s
+
(

xi
s − (−1)|x

i | ∂Ht

∂pi ,s

)
∂

∂xi
− ∂Ht

∂pi

∂

∂xi
s

+
(

pi ,s + ∂Ht

∂xi
s

)
∂

∂pi
+ (−1)|x

i | ∂Ht

∂xi

∂

∂pi ,s
.

As in the classical case, we have shown that its flow determines all the solutions
of the regular variational problem. Moreover, it allows to put additional structures
on the set of solutions. This is what we do in the next section.

13. GRADED AND SYMPLECTIC STRUCTURES
ON THE MANIFOLD OF SOLUTIONS

The next result states that the set of solutions of Hamilton’s equations can
be endowed with a structure of graded manifold. Moreover, the differential of the
Poincaré–Cartan form can be projected to this graded manifold and its projection
is a graded symplectic form on it.

Theorem 13.1(The manifold of solutions). Let L be a regular homogeneous
Lagrangian and letAS be the ring of first integrals of the distribution defined by
the radical ofd2ξ (i.e., the first integrals common to both Xt and Xs). Then,

1. d2ξ can be irreducibly projected ontoAS, thus defining a symplectic
structure of degree|L| + 1.

2. TheR-graded algebras homomorphismsχS: AS→ 3 · R can be identi-
fied with the initial conditions of the differential equations(13).
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Proof: The first statement follows from the previous results. To prove the second
one, let us note thatAS is a subring ofA(J1,1). Then, it is clear that each
χ : A(J1,1)→ 3 · R induces, by restriction, a homomorphismχS: AS→ 3 · R.
The result now follows bearing in mind that, locally,A(J1,1) = R1|1⊗̂AS, where
A ⊗̂B stands for the completion ofA⊗ B with respect to Grothendieck’s
π -topology. For the details see (Hern´andez Ruip´erez and Mu˜noz Masqu´e, 1984, I,
Theorem 3). ¤

Remark 13.2(Local expression of the symplectic form). IfL is a regular homo-
geneous Lagrangian, then the set of graded functions (xi , xi

s, pi , pi ,s), i = −n, . . . ,
−1, 1,. . . , m, wherepi , pi ,s are defined in (9), is a system of graded coordinates
on the graded manifold of solutions and the expression of the symplectic form in
this set of canonical coordinates is

−dxi
s ∧ dpi − (−1)|x

i |dxi ∧ dpi ,s = − d

ds
(dxi ∧ dpi ).

Remark 13.3. If dim(M,A) = (m, n), then dimS= (2(m+ n), 2(m+ n)). The
dimension of this graded manifold allows both cases of homogeneous symplec-
tic graded manifolds: It allows odd symplectic forms because the dimension,
2(m+ n), of the underlying manifold agrees with the dimension of the graded
ring and it allows even symplectic forms because the dimension of the underlying
manifold is even (see Monterde, 1992b).

Remark 13.4. In spite of the fact that in the ungraded case the manifold of solu-
tions is the tangent bundle, this is no longer true in the graded case. The graded
manifold of solutions is not the supertangent bundle of (M,A). See the last para-
graph of Section 7.1.

Remark 13.5. Another remarkable fact is the change of parity. If the initial graded
Lagrangian is even (resp. odd), then the resulting symplectic form is odd (resp.
even). This means that if one wants to generalize a classical Lagrangian, then it is
natural to choose an even Lagrangian whose image through the natural map be the
classical Lagrangian. Then, the simplectic form will be an odd symplectic form. Let
us recall that odd symplectic forms are simpler than the even ones. It is well known
that in order to define an even symplectic form we need, at least, a classical symplec-
tic form and a nondegenerate metric structure on some trivializing bundle. In or-
der to define an odd simplectic form, however, just a bundle isomorphism between
the tangent bundle of the underlying manifold and the trivializing bundle is needed.

14. COMPARISON WITH THE KOSZUL–SCHOUTEN BRACKETS

A classical particle is a curveγ : R→ M taking values in a differentiable
manifold M . The generalization of a classical partical is the following: A particle
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is a curveγ : R1|1→ (M, C∞M ). Note that a curveγ : R1|1→ (M, C∞M ) is totally
determined by its footprint on the base manifolds ˜γ :R→ M . The difference with
the classical notion is that we allow not onlyR-variations, but alsoR1|1-variations.
This means that we work with maps0: R2|2→ (M, C∞M ), or equivalently, with
maps0∗: C∞M → R2|2. Thus, the image of a coordinate functionxi can be written as
follows: 0∗(xi ) = f i (t, t̄)+ hi (t, t̄)ss̄, i = −n, . . . ,−1, 1,. . . , m. Note that we
introduceR2|2 by categorical arguments. First, we substituteR-curves on a mani-
fold byR1|1-curves on the graded manifold (M, C∞M ), and nothing is changed. Both
sets of curves are the same. Secondly, we useR1|1-variations ofR1|1-curves, but
this is equivalent to study maps fromR2|2→ (M, C∞M ). Some authors introduce
R2|2 by other arguments. For example in Freed (1999, p. 22), the reason to intro-
duce two odd variables is just to obtain a nonvanishing evaluation of a particular
Lagrangian density.

All along this section, we study classical regular Lagrangians. In a certain
sense, we can say that we look at classical problems from a graded point of view.

Let us consider the following particular case of graded manifold: (M, C∞M ),
i.e., a graded manifold with no odd coordinates; its graded dimension is (n, 0),n =
dim M . A system of graded coordinates for this graded manifold is of the kind
(xi ), i = 1, . . . , n, with no coordinates of negative indices. Let us also consider a
classical regular LagrangianL ∈ C∞(J1(p1:R× M → R)). This function can be
lifted to J1(R1|1, (M, C∞(M))) and then, we can build up the first order Berezinian
density [dt ⊗ d

ds]L. Note that, due to the absence of odd coordinates in (M, C∞M ),
the LagrangianL is also regular from the point of view of graded variational
calculus.

Applying the previous deductions we obtain

1. A graded manifold of solutions of graded dimension (2n, 2n), whose
canonical coordinates are (xi , pi , xi

s, pi ,s), i = 1, . . . , n, and
2. An odd symplectic form that in canonical coordinates is written as

ωS = −L d
ds

(dxi ∧ dpi ) = −dxi
s ∧ dpi − dxi ∧ dpi ,s.

Example 14.1. Let us consider the concrete example of the following classical
regular Lagrangian onM = Rn: L = 1

2

∑n
i=1(xi

t )
2. According to Example 5.4,

its graded Euler–Lagrange equations are simplyj 2(γ )∗xi
tt = 0 for i = 1, . . . , n.

This agrees with the aforementioned fact that curvesγ : R1|1→ (M, C∞(M)) are
totally determined by their footprint on the base manifolds ˜γ : R→ M . Thus, in
this case, a graded curveγ , is a solution to the graded Euler–Lagrange equations if
and only ifγ̃ is a solution to the classical Euler–Lagrange equations. The canoni-
cal coordinates are:pi = xi

t , pi ,s = xi
ts, i = 1, . . . , n, and the odd symplectic form

on the graded manifold of solutions is given by:ωS = −
∑n

i=1 dxi
s ∧ dxi

t −∑n
i=1 dxi ∧ dxi

ts.
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14.1. Koszul–Schouten Bracket

Let (N, ω) be a symplectic manifold of dimension 2n. As it is well known,
one can construct an odd symplectic form on the graded manifold (N,ÄN). This is
the form whose odd Poisson bracket is the Koszul–Schouten bracket. This bracket
is defined as follows: LetP be the associated nondegenerated Poisson bivector
and let #P: T∗N → T N be the induced isomorphism. We denote the bracket
by [[ , ]] P: Ä(N)×Ä(N)→ Ä(N). Its action on differentiable 0 and 1-forms is
given by

[[ f, g]] P = 0, [[ f, dg]] P = P(df, dg), [[df, dg]] P = d(P(df, dg)), (14)

for any f, g ∈ C∞(N), and it can be extended to the whole algebra of differentiable
forms by using the Leibniz identity. See (Koszul, 1985) or (Khudaverdian, 1998) for
the details. Let us take a system of Darboux coordinates (yi , yi+n), i = 1, . . . , n,
for (N, ω) such thatω =∑n

i=1 dyi ∧ dyi+n, and the associated Poisson tensor is
written asP =∑n

i=1(∂/∂yi ) ∧ (∂/∂yi+n). The associated system of graded coor-
dinates on (N,ÄN) is (yi , yi+n, y−i , y−i−n), i = 1, . . . , n, where we recall that a
coordinate with negative index,y−i , denotes an odd generator,dyi .

Lemma 14.2. With this system of graded coordinates, the odd symplectic form
associated to the odd Poisson bracket defined by Koszul can be written as

ωK =
n∑

i=1

dy−i ∧ dyi+n + dyi ∧ dy−i−n.

Proof: The Hamiltonian vector fields defined by the graded coordinate functions
are (see Beltr´an and Monterde, 1995, Proposition 2.6)

[[ yi , ·]] = −ι ∂

∂yi+n
, [[ yi+n, ·]] = ι ∂

∂yi
, [[dyi , ·]] = −L ∂

∂yi+n
, [[dyi+n, ·]] = L ∂

∂yi
.

Recall that the odd symplectic form,ω, associated to a nondegenerate odd Poisson
bracket, [[·, ·]], is defined by the formula [[α, β]] = −〈Dα, Dβ ;ω〉, whereDα de-
notes the Hamiltonian vector field associated toα ∈ Ä(M).

Let us compute the associated odd symplectic form,ωK , for the Koszul–
Schouten bracket. First, remark that for the graded coordinate system (yi , yi+n,
y−i , y−i−n), i = 1, . . . , n, the associated local basis of graded vector fields is(

L ∂

∂yi
, L ∂

∂yi+n
, ι ∂

∂yi
, ι ∂

∂yi+n

)
, i = 1, . . . , n,

and the associated local basis of graded 1-forms is (dyi , dyi+n, dy−i , dy−i−n), for
i = 1, . . . , n. Accordingly,〈

L ∂
∂yi+n

, ι ∂

∂y j
;ωK

〉
= −[[dyi , y j+n]] = −δi j ,〈

ι ∂

∂yi+n
, L ∂

∂y j
;ωK

〉
= −[[ yi , dy j+n]] = −δi j .
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All other terms vanish. Therefore, we obtainωK =
∑n

i=1 dy−i ∧ dyi+n + dyi ∧
dy−i−n. ¤

Remark 14.3. The Koszul–Schouten Poisson bracket is a particular case of
odd Poisson bracket, also called antibracket or Buttin bracket. It can be shown
that if the exterior differential,d, is a derivation of an odd Poisson bracket on
(M,ÄM ), then it is a Koszul–Schouten bracket (see Beltr´an and Monterde, 1995,
Corollary 4.4). Moreover, the Koszul–Schouten bracket is an example of a Batalin–
Vilkovisky structure on (M,ÄM ) (see Kosmann–Schwarzback and Monterde,
2000, Theorem 2.19).

14.2. Identification

Let L be a classical regular Lagrangian function on a manifoldM . Then,
it defines a nondegenerated Poisson bivector,P, on TM. Let us denote byωK

the Koszul–Schouten symplectic form on the graded manifold (TM,Ä(TM)) (i.e.,
N = TM). Therefore (TM,ÄTM) together with the odd symplectic formωK , is an
odd symplectic supermanifold.

On the other hand, let us consider the graded manifold (M, C∞M ) and the same
Lagrangian lifted to the graded first-order jet bundle. By applying the previous de-
ductions to the corresponding Berezinian density and according to Theorem 13.1,
we can build up a graded manifold, the manifold of solutions (S,AS), together
with a symplectic formωs.

In this section our main objective is to prove that (TM,ÄTM) together with
the odd symplectic formωK and (S,AS) together with the symplectic formωs,
are the same odd symplectic supermanifold.

Lemma 14.4. Given a classical regular Lagrangian L, there is an isomorphism
between the graded manifolds J1,1(R1|1, (M, C∞M )) andR1|1× (TM,ÄTM).

Proof: For both graded manifolds the base manifold isR× TM= J1(R, M).
Let us take onTM the system of classical canonical coordinates associated to the
classical regular LagrangianL , (xi , pi ), i = 1, . . . , n. According to this choice
(t, s, xi , pi , x−i , p−i ), i = 1, . . . , n, is a system of graded coordinates onR1|1×
(TM,ÄTM) and (t, s, xi , pi , xi

s, pi ,s), i = 1, . . . , n, is a system of coordinates on
J1,1(R1|1, (M, C∞M )).

The idea is to realize that jet coordinates of the kindxi
s, pi ,s behave like the

differential 1-formsx−i = dxi , p−i = dpi .
We define the isomorphism between the two graded manifolds

8: R1|1× (TM,ÄTM)→ J1,1
(
R1|1,

(
M, C∞M

))
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by setting

8∗(t) = t, 8∗(s) = s,

8∗(xi ) = xi , 8∗(pi ) = pi ,

8∗(x−i ) = xi
s, 8∗(p−i ) = pi ,s.

It can be easily proved that this local definition is global. Indeed, ifxi = xi

(z1, . . . , zn) is a change of coordinates inM , then the corresponding changes
of graded coordinates are given by

xi
s =

∂xi

∂zj
zj

s , pi = ∂zj

∂xi
qj ,

whereqj = ∂L/∂zj . Moreover, recalling thatx−i denotes the odd generator dxi ,
we have

x−i = dxi = ∂xi

∂zj
dzj = ∂xi

∂zj
z− j .

This means

8∗(x−i ) = 8∗
(
∂xi

∂zj
z− j

)
= ∂xi

∂zj
8∗(z− j ) = ∂xi

∂zj
zj

s = xi
s.

And similarly for the coordinatespi ,s and p−i . Therefore, the map8 is globally
defined. ¤

Theorem 14.5. The graded symplectic manifolds(TM,ÄTM) together with
the Koszul–Schouten symplectic formωK and the manifold of solutions(S,AS)
together with the variational symplectic formωS, are isomorphic.

Proof: In the graded coordinates introduced in Lemma 14.4, the Koszul odd sym-
plectic form can be written asωK = dx−i ∧ dpi + dxi ∧ dp−i , and the symplectic
form on the graded manifold of solutions,ωS = −(dxi

s∧ dpi + dxi ∧ dpi ,s). Re-
mark that|xi | = 0 for the initial graded manifold is of graded dimension (n, 0).
Therefore, they are related by the isomorphism8: 8∗(ωs) = −ωK . ¤

We have thus obtained the Koszul odd symplectic form, or equivalently the
odd symplectic form defined by a nondegenerated Batalin–Vilkovisky structure,
as a byproduct of a well known deduction of the symplectic structure associated
to a regular Lagrangian, but adapting this deduction to the graded case.

14.3. The Hamiltonian Functions

Let L be a regular Lagrangian onM and letH be the corresponding classical
Hamiltonian function; i.e.,H = L − xi

t pi . Let ω be the associated symplectic
form onTM and letXH be the Hamiltonian vector field defined byιXHω = dH.
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As above, let us study the same Lagrangian but from a graded point of
view. The image by the isomorphism8 of the t and s-Hamiltonian functions
(10) associated to the graded problem are the following:8∗(Ht ) = dH ∈ Ä1(TM),
8∗(Hs) = −ω ∈ Ä2(TM). Indeed,

8∗(Ht ) = 8∗
(
−xi

st pi − xi
t pi ,s + dL

ds

)
= dxi

t pi − xi
t dpi + dL = dH,

and 8∗(Hs) = 8∗(−xi
s pi ,s) = −dxi ∧ dpi = −ω. Therefore, the graded

Hamiltonian vector field with respect to the odd symplectic formωK (the Koszul–
Schouten graded form) of these two graded functions are the following (see
Proposition 2.6 and its remark in Beltr´an and Monterde, 1995):

XG
8∗(Ht ) = −LXH ∈ Der0(Ä(T M)), XG

8∗(Hs) = −d ∈ Der1(Ä(T M)).
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